BENTON HARBOR POWER PLANT LIMNOLOGICAL STUDIES

PART XIII, COOK PLANT PREOPERATIONAL STUDIES 1972

John C. Ayers
Erwin Seibel

Under Contract with:

American Electric Power Service Corporation Indiana and Michigan Electric Company

Special Report No. 44
of the
Great Lakes Research Division
The University of Michigan
Ann Arbor, Mi chigan

ACKNOWLEDGEMENTS

A study and report of this magnitude requires the efforts of many people. We would like to take this opportunity to thank those who assisted in the gathering, analysis, and compilation of the data presented here.

We appreciate the tireless efforts of William Yocum and Thomas Bottre 11 in the field and laboratory during the past season. We thank the following members of our research group for the hours devoted to the gathering, counting, and analyzing of samples: John Dorr III, Luis Garcia, Bruce Higgins, Sarah Kleinschmidt, James Lee, Sandra Malosh, Timothy Miller, Mohammed Omair, Donald Robinson, Nancy Schrank, Paul Schelble, H. K. Soo, John Stewart, Harold Watkins, and Susan Williams.

The skill and patience of the captain and mate of the R/V MYSIS, Franklin Dunster and Earl Wilson, must be knowledged.

We thank Robin Neuman for her patience during the preparation, assistance in the editing, and typing of the report, and Janine Handyside for her assistence in the typing of the manuscript. Elizabeth Ayers worked with us in the field, in the 1 ab , and also with the typing of the manuscript.

To the Cook Plant Construction Staff, Robert Lawson, Robert Sampson, Jon Barnes, Marvin Demerest, and the Indiana and Michigan Service Crew there is just not enough thanks for all they contributed to make our field work most productive. To the Operation Staff of the Cook Plant, Robert Jurgensen, Delmot Shaller, Bertil Svensson, Thomas Plunkett, Thomas Pinkham, March Schwan, and the members of the Technical Department go a special thanks for their efforts to assist us; also to Robert Purcell of the Bultema Dock and Dredge Co. We thank Pat Greene and Patty Mathews for their assistance in helping us get information needed for our safe field operation, and for their general hospitality.

PREVIOUS PARTS OF THE REPORT SERIES RELATIVE TO THE DONALD C. COOK NUCLEAR STATION

Benton Harbor Power Plant Limnological Studies
Part I. General Studies. J. C. Ayers and J. C. K. Huang. April 1967. 31 p.
Part II. Studies of Local Winds and Alongshore Currents. J. C. Ayers, A. E. Strong, C. F. Powers, and R. Rossmann. December 1967. 45 p.

Part III. Some Effects of Power Plant Waste Heat on the Ecology of Lake Michigan. J. R. Krezoski. June 1969. 78 p.

Part IV. Cook Plant Preoperational Studies 1969. J. C. Ayers, R. F. Anderson, N. W. O'Hara, G. Kidd. March 1970. 92 p.

Part V. Winter Operations, March 1970. N. W. O'Hara, R. F. Anderson, W. L. Yocum, J. C. Ayers. April 1970. 17 p.

Part VI. Pontoporeia affinis (Crustacea, Amphipoda) as a Monitor of Radionuclides Released to Lake Michigan. C. C. Kidd. 1970. 71 p.

Part VII. Cook Plant Preoperational Studies 1970. J. C. Ayers, D. E. Arnold, R. F. Anderson, H. K. Soo. March 1971. 72 and 13 p.

Part VIII. Winter Operations 1970-1971. J. C. Ayers, N. W. O'Hara, W. L. Yocum. June 1971. 41 p.

Part IX. The Biological Survey of 10 July 1970. J. C. Ayers, W. L. Yocum, H. K. Soo, T. W. Bottrell, S. C. Mozley, L. C. Garcia. 1971. 72 p.

Part X. Cook Plant Preoperational Studies 1971. J. C. Ayers, H. K. Soo, W. L. Yocum. August 1972. 140 and 12 p.

Part XI. Winter Operations 1971-1972. J. C. Ayers, W. L. Yocum. September 1972. 26 p.

Part XII. Studies of the Fish Population Near the Donald C. Cook Nuclear Power Plant, 1972. D. J. Jude, T. W. Bottrell, J. A. Dorr III, T. J. Miller. March 1973. 115 p.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ii
PREVIOUS PARTS OF THE REPORT SERIES RELATIVE TO THE DONALD C. COOK NUCLEAR STATION iii
INTRODUCTION 1
A. COOK PLANT PREOPERATIONAL STUDIES 1972 2
A. 1 Recording of Local Water Temperatures 2
A. 2 Study of Floating Algae and Bacteria 18
A. 3 Development of a Monitor for Phytoplankton 62
A. 4 Study of Attached Algae 63
A. 5 Study of Zooplankton 77
A. 6 Study of Aquatic Macrophytes 169
A. 7 Study of Benthic Organisms 178
A. 8 Study of Local Fish 250
A. 9 Support of Aerial Scanning 250
A. 10 Study of Entrainment and Impingement 251
B. SURVEYS OF EXISTING WARM WATER PLUMES 253
C. THE ICE BARRIER AT THE COOK PLANT SITE 253
D. EFFECTS OF EXISTING THERMAL DISCHARGES ON LOCAL ICE BARRIERS 254
E. EFFECTS OF RADIOACTIVE WASTES IN THE AQUATIC ENVIRONMENT 254
E. 1 Gamma Scan of Bottom Sediments 254
E. 2 The Most Sensitive Organisms for Concentration of Radwastes 255

INTRODUCTION

In Part VII (March 1971) of our report series relative to the Donald C. Cook Nuclear Power Station, the following report format was established:
A. COOK PLANT PREOPERATIONAL STUDIES
A. 1 Recording of Local Water Temperatures
A. 2 Study of Floating Algae and Bacteria
A. 3 Development of a Monitor for Phytoplankton
A. 4 Study of Attached Algae
A. 5 Study of Zooplankton
A. 6 Study of Aquatic Macrophytes
A. 7 Study of Benthic Organisms
A. 8 Study of Local Fishes
A. 9 Support of Aerial Scanning
A.10* Study of Entrainment and Impingement
B. SURVEYS OF EXISTING WARM WATER PLUMES
C. THE ICE BARRIER AT THE COOK PLANT SITE
D. EFFECTS OF EXISTING THERMAL DISCHARGES ON LOCAL ICE BARRIERS
E. EFFECTS OF RADIOACTIVE WASTES IN THE AQUATIC ENVIRONMENT
E. 1 Gamma Scan of Bottom Sediments
E. 2 The Most Sensitive Organisms for Concentrations of Radwastes
E. 3 Study of Lake Michigan's Present Radioactivity Content (FINISHED)

This format remains applicable and in use. Different timing of incoming results requires that some parts of the format be reported at times different from the reporting of others. In addition, some of the parts will attain bulk sufficient to require separate reporting. In general this report constitutes an "annual report" of the year's activities.
*A. 10 is an addition to the annual report format.

A. 1 Recording of Local Water Temperatures

John C. Ayers

Daily minimum and maximum water temperatures are collected by Indiana and Michigan personnel from an array of thermistors installed at the Cook Plant site and at the water treatment plants of Benton Harbor and St. Joseph. The Benton Harbor intake is 3,375 feet from shore and in 40 feet of depth; the St. Joseph intake is 1,490 feet from shore and in 19 feet of water.

The Cook Plant installation consists of a thermistor equipped submarine cable extending into the lake at the north edge of the plant property. Two of the five thermistors are located approximately 300 feet from shore; the rest are 2,500 feet from shore. At the 300 foot position the thermistors are held by subsurface floats at water depths of 2 feet and 4 feet; at the 2,500 foot position the thermistors are similarly held at water depths of 2,12 , and 17 feet.

The thermistors at the plant have had a record of varying degree of outage. The array was activated on 3 May 1972 but was taken out of service on 18 May when the cable broke at the junction box, apparently because the cable was rubbing against a float. Restored on 31 May, the thermistors at the 300 foot position were put out of commission during a lightning storm on 2 June and remained inoperable for the rest of the summer. The thermistors at the 2,500 foot position were out of order from 19 July through 23 July, and the one at 17 feet of depth proved irreparable and was out of action for the rest of the summer.

The system was removed for inspection and repair in October. Inspection showed that the solid conductor lead wires to the thermistors were broken,
presumably resulting from the flexing caused by wave action on the submerged floats. Lightning damage was not proved, but we have suggested that lightning protection be incorporated into the system that will be installed in the spring of 1973.

Water temperatures through March 1972 have been reported in Part X of the Cook Plant report series. Table 1 reports temperatures collected since April 1972.

Table 2 presents the daily natural temperature variations in their raw water from the records of the Benton Harbor and St. Joseph water filtration plants. These variations are the differences between the daily minima and maxima of raw water temperatures at the plants. The daily temperature variations at these plants have been grouped by $3^{\circ} \mathrm{F}$ increments of variation and by numbers of occurrences by days in the months of January through December for the years 1970, 1971, and 1972. The bottom row of the table, headed "2Plant Monthly Fraction," gives the ratio of the numbers of days when the natural temperature variations of $3^{\circ} \mathrm{F}$ or more were recorded to the $2-\mathrm{plant}$ number of total record days for the months and years involved.

Table 3 presents similar data from the thermistors at the 2 and 12 foot depths at the 2,500 foot position in the Cook Plant temperature sensing systom. The bottom line of Table 3, headed "2-Depth Monthly Fraction," gives the ratio of the number of days when natural temperature variations of $3^{\circ} \mathrm{F}$ or more were recorded to the 2 -depth number of total record days for the months and years involved.

Table 4 reduces the monthly fractions of Tables 2 and 3 to percentage of days in which the natural water temperature variations of $3^{\circ} \mathrm{F}$ or more were recorded in the Cook Plant Region.

Table 1. Daily minimum and maximum Lake Michigan water temperatures at the Cook Plant site and at the Benton Harbor (BH) and St. Joseph (SJ) water plant intakes. Whole degrees Fahrenheit. Note: Blank spaces indicate that no data were obtained.

APRIL 1972

DATE	MIN MAX	MIN	MAX	MIN	MAX				
1						36	37	34	37
2						36	38	35	36
3						38	39	36	38
4						37	38	36	40
5						37	40	37	38
6						39	39	37	38
7						37	38	38	41
8						37	37	37	38
9						37	40	37	38
10						40	41	38	38
11						39	41	38	43
12						39	40	39	43
13						40	43	39	43
14						40	42	42	44
15						40	41	41	43
16						41	42	42	43
17						40	43	42	43
18						43	45	42	45
19						44	45	45	45
20						43	45	42	45
21						43	44	42	42
22						44	45	42	43
23						45	46	43	44
24						46	46	43	48
25						44	45	44	45
26						44	45	44	46
27						46	47	42	46
28						44	45	42	45
29						43	44	44	44
30						43	44	44	45
MIN						36	37	34	36
MAX ${ }_{*}$						46	47	45	48
AVE*						41	42	40	42

*Average temperature rounded to nearest whole degree Fahrenheit

Table 1 , cont'd.

MAY 1972

DATE	MIN MAX		MIN MAX			MIN MAX									
1												44	47	43	45
2					OUT	OF	ORDER					47	47	45	47
3	45	48	47	48		45	47	45	47	45	45	47	47	45	46
4	45	46	46	52		45	48	47	52	46	48	46	47	45	47
5	45	47	45	48		45	53	45	47	45	53	46	47	45	46
6	47	51	46	48		47	52	47	50	47	51	46	48	46	49
7	46	47	46	49		46	49	46	49	46	49	47	49	45	48
8	45	48	44	46		45	48	45	48	47	48	45	47	45	46
9	44	49	44	46		45	48	45	47	45	49	45	46	45	46
10	43	54	42	44		43	59	43	48	43	53	46	47	45	47
11	47	58	42	44		45	58	42	47	47	57	46	46	45	47
12	45	50	41	46		42	50	43	47	42	50	45	45	45	47
13	45	48	43	47		46	48	43	46	46	48	46	47	47	48
14	46	47	46	49		46	48	45	48	46	48	48	50	48	49
15	46	49	46	47		46	48	45	48	46	49	50	51	49	49
16	46	50	45	47		46	50	46	49	46	47	50	51	49	50
17	47	50	46	47		47	50	47	49	48	54	49	50	49	50
18												48	49	49	49
19												46	47	45	49
20												45	46	44	49
21												45	47	48	50
22												46	47	45	49
23												45	49	44	48
24					OUT	OF 0	ORDER					45	47	44	46
25												45	45	43	46
26												44	45	43	44
27												43	44	43	46
28												45	48	45	50
29												48	52	49	55
30												53	56	54	57
31	47	53	47	52		49	52	47	52	49	52	50	56	48	55
MIN	43	46	41	44		42	47	42	46	42	45	43	44	43	44
MAX *	47	58	47	52		49	59	47	52	49	57	53	56	54	57
AVE	46	50	45.	48		46	51	45	48	46	50	47	48	46	48

Table 1, cont'd.

JUNE 1972

DATE	MIN MAX	MIN MAX	MIN	MAX								
1	5156	5056	56	60	50	53	50	54			51	54
2	5561	5258	54	60	52	58	55	58	54	55	51	54
3					55	59	58	66	53	57	57	61
4			53	62	53	59	53	61	57	59	57	61
5			51	60	50	55	51	60	55	58	55	57
6			55	59	51	60	54	60	57	58	53	59
7			51	59	49	51	50	59	51	56	50	53
8			51	58	50	58	52	58	51	58	52	59
9			56	59	55	59	55	59	54	61	58	62
10			44	57	45	57	47	57	51	60	47	61
11			45	56	44	54	44	56	48	52	45	54
12			55	60	54	60	55	60	51	56	54	56
13			58	64	57	60	58	64	56	58	56	61
14			59	66	59	64	59	66	57	61	60	63
15			61	67	60	64	62	67	61	63	61	64
16	OUT OF	ORDER	52	64	50	57	58	64	58	63	55	64
17			48	55	44	53	46	58	54	58	52	56
18			44	53	44	47	48	54	50	52	50	54
19			45	58	44	49	47	57	50	53	50	53
20			56	65	51	57	51	57	57	57	52	62
21			44	58	43	55	43	55	54	58	48	60
22			43	47	42	47	42	47	49	53	48	55
23			46	49	47	49	47	49	48	51	47	50
24			47	48	47	48	47	48	47	50	48	49
25			47	48	47	48	47	48	49	49	48	48
26			48	54	48	53	48	54	49	51	49	52
27			53	55	53	55	53	55	51	54	52	54
28			55	55	54	55	54	55	54	57	54	56
29			55	68	54	61	54	61	56	57	54	57
30			55	60	54	60	54	56	55	56	54	56
MIN	5156	5056	43	47	42	47	42	47	47	49	45	48
MAX *	5561	5258	61	68	60	64	62	67	61	63	61	64
AVE*	5359	5157	51	58	50	56	51	57	53	56	52	57

Table 1, cont'd.

	COOK PLANT									BH	S	
Offshore		.				500	Ft .			3375	149	Ft.
Depth	2 Ft .	4	Ft.		Ft.		Ft.		Ft.	40 F		Ft.

JULY 1972

Cable l, cont'd.

Table 1, cont'd.

Offshore Depth	COOK PLANT								S	J
	300 Ft .	2500 Ft .					3375 Ft .		1490 Ft .	
	2 Ft . 4 Ft .	2 Ft .		12 Ft .		17 Ft .	40 Ft .		19 Ft .	
SEPTEMBER 1972										
DATE	MIN MAX MIN MAX	MIN	MAX	MIN M	MAX	MIN MAX	MIN	MAX	MIN	MAX
1		65	67	65	67		69	72	69	72
2		55	66	53	65		52	69	53	71
3			55		54		50	53	52	53
4		51	55	50	55		50	54	51	52
5		55	59	55	59		54	66	52	63
6			61		61		65	66	65	67
7			66	61	67		65	66	67	67
8		62	65	62	66		66	67	67	67
9		52	66	58	62		57	67	57	67
10		56	59	55	59		57	62	56	60
11		56	60	56	63		54	63	54	60
12		56	60	56	61		54	60	53	57
13		59	59	57	62		53	62	53	62
14		54	60	52	61		54	64	55	63
15		53	57	54	58	OUT	55	63	55	63
16	OUT OF ORDER	57	60	58	61	OF	62	64	63	64
17		60	61	60	62	ORDER	62	64	64	65
18		61	66	61	66		64	66	65	66
19		OUT OF ORDER					62	64	62	65
20		59	60	59	60		62	63	59	62
21		55	60	54	60		57	62	59	63
22		50	55	49	54		52	63	55	63
23		49	50	49	50		52	52	50	52
24		49	50	49	50		51	58	50	53
25		49	53	49	57		54	60	51	60
26		53	55	54	56		60	63	60	63
27		50	55	50	55		51	62	54	62
28		50	53	49	59		51	57	52	55
29		52	55	50	59		57	61	56	61
30		51	54	52	54		58	60	60	61
MIN		49	50	49	50		50	52	50	52
MAX *			67		67		69	72	69	72
AVE*		55	59	55	59		57	62	57	62

Table 1, cont'd.

Table 1, cont'd.

Offshore	COOK PLANT						BH		SJ	
	e 300	Ft.		2500 Ft .			3375 Ft .		1490 Ft .	
Depth	2 Ft .	4 Ft		2 Ft .	12 Ft .	17 Ft .	40			Ft.
	NOVEMBER 1972									
DATE	MIN MAX	MIN MAX		MIN MAX	MIN MAX	MIN MAX	MIN	MAX		MAX
1							52	52	50	50
2							52	52	50	51
3							51	52	50	50
4							51	51	50	50
5							51	52	49	50
6							50	51	48	49
7							51	51	49	49
8							51	51	49	50
9							50	51	49	50
10							50	51	48	49
11							50	51	48	49
1.2							50	51	48	48
13							50	50	47	48
14							49	51	45	47
15							47	49	45	46
16			NOT I	In OpERATIO			47	47	45	46
17							47	48	44	46
18							46	47	44	45
19							45	46	43	44
20							45	46	41	43
21							45	46	44	44
22							43	46	43	44
23							43	44	41	43
24							41	43	41	42
25							41	43	41	42
26							42	43	42	43
27							41	43	40	40
28							40	42	39	40
29							40	42	38	39
30							40	41	39	40
MIN							40	41	38	39
MAX ${ }_{\text {* }}$							52	52	50	51
AVE*							47	48	45	46

Table 1, cont'd.

COOK PLANT							BH		SJ	
Jffshore	e 300	Ft.		2500 Ft .			3375 Ft .		1490 Ft .	
Depth	2 Ft .	4 Ft		2 Ft .	12 Ft .	17 Ft .		Ft.		Ft.
DECEMBER 1972										
DATE	MIN MAX	MIN MAX		MIN MAX	MIN MAX	MIN MAX	MIN	MAX	MIN	MAX
1							39	41	37	38
2							39	40	38	39
3							40	41	39	39
4							40	40	38	39
5							40	40	38	39
6							39	39	35	39
7							38	39	36	37
8							38	40	33	37
9							39	40	36	36
10							38	39	35	37
11							36	39	34	35
12							36	37	34	34
13							36	37	34	34
14							35	36	34	34
15							35	36	34	34
16			NOT I	IN OPERAT			35	36	32	33
17							35	35	33	33
18							34	35	32	32
19							34	35	32	32
20							34	34	32	33
21							34	35	33	33
22							35	35	33	33
23							34	35	33	33
24							34	36	33	33
25							35	37	33	33
26							35	35	33	33
27							35	35	33	33
28							35	36	33	34
29							35	36	33	34
30							35	37	34	34
31							36	37	35	35
MIN							34	34	32	32
MAX ${ }_{\text {* }}$							40	41	39	39
AVE*							36	37	34	35

Table 1, cont'd.

Offshore Depth	COOK PLANT						BH		SJ	
	300 Ft .			2500 Ft .			3375 Ft .		1490 Ft .	
	2 Ft .	4 Ft .		2 Ft .	12 Ft .	17 Ft .		F.	19 F	t.
JANUARY 1973										
DATE	MIN MAX	MIN MAX		MIN MAX	MIN MAX	MIN MAX	MIN	MAX	MIN	MAX
1							36	37	33	34.5
2							35	36	32.5	33.5
3							35	35	32.5	33
4							34	35	33	33.5
5							34	34	32	32.5
6							34	34	32	32.5
7							34	34	32	32.5
8							34	34	32	32.5
9							34	34	32	32.5
10							34	34	32	32
11							34	34	32	32.5
12							34	34	32	32.5
13							34	34	32	32.5
14							34	34	32	32.5
15							34	34	32	32.5
16			NOT I	IN OPERAT			34	34	32	32
17							34	34	32	32
18							34	35	32	33
19							35	36	32.5	33.5
20							35	35	32.5	34
21							35	35	33	35.5
22							35	35	33.5	34
23							35	36	33	34
24							35	36	33	33.5
25							36	36	33	33.5
26							36	36	33	34
27							36	37	33.5	34.5
28							36	37	33.5	35
29							35	36	32.5	33.5
30							35	36	32	32.5
31							35	35	32	34
MIN							34	34	32	32
MAX *							36	37	33.5	35.5
AVE							35	35	33	33

Table 2. Frequencies and magnitudes of natural daily temperature changes at Benton Harbor and St. Joseph water filtration plants in 1970 through 1972.

Daily	JAN		FEB		MAR		APR		MAY			JUN		
${ }^{\text {O }}$ F	70	7172	70	7172	70	172		7172		71		70	71	72
3-5	ND	- -	ND	1 -	ND	25		1115	13	10	16	19	26	30
6-8	ND	- -	ND	1 -	ND	- -	ND	- -	1	2	2	6	9	5
9-11	ND	- -	-	-	-	6	2	4						
12-14	ND	- -	-	-	-	3	1	2						
15-17	ND	- -	-	-	-	2	-	-						
18-20	ND	- -	-	-	-	2	1	-						
21-23	ND	- -	-	-	-	-	-	-						
24-26	ND	- -	ND	- -	ND	- -	ND	-	-	-	-	-	-	-
27-29	ND	- -	ND	- -	ND	-	ND	- -	-	-	-	-	-	-

2-P1ant
Monthly
Fraction \quad ND $\frac{0}{62} \frac{0}{62} \quad$ ND $\frac{2}{56} \frac{0}{56} \quad$ ND $\frac{2}{62} \frac{5}{62} \quad$ ND $\frac{11}{60} \frac{15}{60} \quad \frac{14}{42} \frac{12}{58} \frac{18}{62} \quad \frac{38}{60} \frac{39}{60} \frac{41}{59}$

2-P1ant
$\begin{array}{lllllllllllllllll}\text { Ionthly } \\ \text { Fraction } & \frac{24}{62} & \frac{41}{61} & \frac{32}{62} & \frac{48}{62} & \frac{41}{62} & \frac{27}{62} & \text { ND } & \frac{20}{60} & \frac{40}{60} & \frac{4}{62} & \frac{7}{62} & \frac{0}{62} & \frac{2}{60} & \frac{2}{60} & \frac{1}{60} \quad \frac{0}{62} & \frac{0}{62}\end{array} \frac{2}{62}$
$N D=$ No data.

- = This magnitude of temperature variation was not reached.

Table 3. Frequencies and magnitudes of natural daily temperature changes at the 2 foot and 12 foot thermistors at the 2,500 foot position off the Cook Plant in 1970 through 1972.

	JAN	FEB	MAR	APR	MAY	JUN
$\begin{gathered} \text { Change } \\ \mathrm{F} \end{gathered}$	707172	707172	707172	707172	707172	707172
3-5	ND - ND	ND 2 ND	ND 2 ND	ND - ND	16420	$18 \quad 919$
6-8	ND - ND	ND - ND	ND - ND	ND - ND	232	$10-16$
9-11	ND - ND	ND - ND	ND - ND	ND - ND	- -	$4 \begin{array}{lll}4 & 8\end{array}$
12-14	ND - ND	ND - ND	ND - ND	ND - ND	-	327
15-17	ND - ND	ND - ND	ND - ND	ND - ND	- - 1	1
18-20	ND - ND	ND - ND	ND - ND	ND - ND	- - -	2
21-23	ND - ND	ND - ND	ND - ND	ND - ND	- - -	- - -
24-26	ND - ND	ND - ND	ND - ND	ND - ND	- - -	- -
27-29	ND - ND	ND - ND	ND - ND	ND - ND	- - -	- - -

2-Depth
$\begin{array}{lllllllllll}\text { Monthly } \\ \text { Fraction } & \frac{0}{62} & \text { ND } \quad \frac{2}{56} & \text { ND } \quad \frac{2}{62} & \text { ND } \quad \text { ND } & \frac{18}{62} & \frac{7}{42} & \frac{24}{58} & \frac{38}{32} & \frac{12}{60} & \frac{50}{60} \\ 59\end{array}$

	JUL	AUG	SEP	OCT	NOV	DEC
	707172	7071	707172	707172	707172	707172
3-5	17425	11 ND 18	9 ND 32	14 ND ND	3 ND ND	3 ND ND
6-8	$2 \quad 68$	8 ND 8	5 ND 5	1 ND ND	- ND ND	- ND ND
9-11	- 32	8 ND	- ND 4	2 ND ND	- ND ND	- ND ND
12-14	- 11	4 ND	1 ND 2	- ND ND	- ND ND	ND ND
15-17	1	- ND	7 ND	- ND ND	- ND ND	1 ND ND
18-20	1	- ND	2 ND	- ND ND	- ND ND	- ND ND
21-23	- - -	- ND	- ND	-- ND ND	- ND ND	- ND ND
24-26	2 -	- ND	- ND	- ND ND	- ND ND	- ND ND
27-29	1 - -	- ND	- ND	- ND ND	- ND ND	- ND ND

2-Depth
$\begin{array}{llllllllll}\text { Monthly } \\ \text { Fraction } & \frac{23}{62} & \frac{15}{54} & \frac{36}{54} & \frac{31}{46} & \text { ND } & \frac{31}{62} & \frac{24}{50} & \frac{43}{58} & \frac{17}{64} *\end{array}{ }^{\text {ND ND }} \quad \frac{3}{50}$ ND ND $\quad \frac{4}{52}$ ND ND

ND $=$ No data.

- = This magnitude of temperature variation was not reached.
*2 sets of data on one day.

Table 4. Percent of days that natural variations of $3^{\circ} \mathrm{F}$ or more occurred. (From the monthly fractions of Tables 2 and 3.)

Month \& Year		$\underline{B H}-\mathrm{SJ}$	COOK PLANT
Jan	1970	no data	no data
	1971	0.0	0.0
	1972	0.0	no data
Feb	1970	no data	no data
	1971	3.6	3.6
	1972	0.0	no data
Mar	1970	no data	no data
	1971	3.2	3.2
	1972	8.1	no data
Apr	1970	no data	no data
	1971	18.3	0.0
	1972	25.0	no data
May	1970	33.3	42.8
	1971	20.7	12.1
	1972	29.0	75.0
Jun	1970	63.3	63.3
	1971	65.0	20.0
	1972	69.5	84.7
Ju	1970	38.7	37.1
	1971	67.2	27.8
	1972	51.6	66.7
Aug	1970	77.4	67.4
	1971	66.1	no data
	1972	43.5	50.0
Sep	1970	no data	48.0
	1971	33.3	no data
	1972	66.6	74.1
Oc	1970	6.4	26.6
	1971	11.3	no data
	1972	0.0	no data
No	1970	3.3	6.0
	1971	3.3	no data
	1972	1.7	no data
Dec	1970	0.0	7.7
	1971	0.0	no data
	1972	3.2	no data

Tables 2, 3, and 4 depict the frequencies and magnitudes of preoperational water temperature variations to which the benthos, periphyton, macrophyton, and psammon are naturally exposed and presumably acclimated, for they exist in the region.

A. 2 Study of Floating Algae and Bacteria

This portion of the report is in two sections. The first is a discussion of the monthly phytoplankton collections at the Cook Plant in 1972, and the second is a report on Biomasses, numbers, and cell weights of Lake Michigan phytoplankton, by John C. Ayers and Erwin Seibel, prepared in January 1973 as an interim report. This interim report is included here in its entirety.

Section 1. Monthly phytoplankton collections at the Cook Plant in 1972
John C. Ayers and Erwin Seibel

Seasonal surveys of phytoplankton in the Cook Plant area were carried out in April (54 station grid of sampling stations), July (36 station grid), and October (36 station grid). The data from these are not yet available and will be reported later. The seasonal surveys are aimed at the determination of any species composition changes over the long term. The monthly surveys presented here are concerned with temporal variations observed in 1972 under natural preoperational conditions.

From April through November 1972, month1y phytoplankton collections were carried out on a seven to nine station grid of sampling stations in front of the Cook Plant. At station $D C-0$ in the surf zone, collections were made by immersing a liter capacity brown polyethylene bottle below the surface; at all other stations collections were made with a Niskin bottle from a depth of one meter. Preservation was by Utermohl's iodine solution.

In April through June, counts and identifications were made by the Utermohl settling chamber and inverted microscope method; from July through November counts and identifications were made by the settle-freeze method of Sanford, Sands and Goldman, 1969 ${ }^{1}$. Reasons for the change of method are given below.

The layout of sampling stations is shown in Figure 1. Station DC-1 was unoccupiable from August through November because dredges were working at the station position during these months. Station $D C-0$ was not a part of the major surveys in April, July, and October. Stations NDC-.5-1 and SDC-.5-1 were not included in the 36 -station major surveys in July and October, but were included in the 54-station survey of April; for July and October the data of stations NDC-.5-2 and SDC-.5-2 (a half mile off shore instead of a quarter mile) were substituted. In these shallow inshore waters any error in phytoplankton results due to the quarter mile greater distance from shore is believed to be minimal.

This study was conducted primarily to ascertain whether spring, summer, and fall seasonal samplings could adequately represent the temporal sequence of phytoplankton numbers, and to determine the best available representative months for the seasonal samplings.

Emphasis has been placed upon phytoplankton numbers because we were convinced of the necessity to change techniques from the Utermohl chamber method to the settle-freeze method. Our experience with the Utermohl method had revealed that detritus, clumping, and the optics of its wet samples were interfering with desirable identification of species. The settle-freeze method gives permanent mounts, better species identification, and more accurate

[^0]
$\stackrel{\text { ~ }}{\stackrel{\sim}{\Sigma}}!$

-20-
counts. The least difference between the methods was in counts per ml.
We thus have April, May, and June by the Utermohl method in which to look for a representative spring sampling month, and July through November by the settle-freeze method in which to seek the most representative summer and fall sampling months.

Although we had reasonable faith that cell numbers obtained by the two methods were comparable, we knew that the better species identification by the settle-freeze method was giving reduction in numbers of cells in certain grouped categories by splitting into species various forms which weaknesses of the Utermohl method had lumped into the "spp." categories.

In order to test this, as well as to test the reality of low cell counts obtained in July, we have, with the advice of Dr. E. F. Stoermer, recombined (relumped) identified species of supposedly comparable ecological valence back into the grouped "spp." category. Table 5 presents these tests on the genera Ankistrodesmus, MeZosira, and Stephanodiscus (in the latter only the small and difficult forms S. binderanus, S. hantzschii, S. minutus, S. subtilis, and S. tenuis were recombined with the unidentified "spp." forms).

In Ankistrodesmus and MeZosira the recombining produced smoother transitions across the July low counts, but did not eliminate the July lows. In Stephanodiscus there still remained an abrupt change in numbers from June to July. At present we believe that the July low counts should be considered real until the settle-freeze method can be extended through July 1973.

During the eight months of collections 164 species or groups of phytoplankters were taken. For presentation we have arbitrarily separated them into "Abundant" and "Rare" at 100 cells collected during the eight months. The counts of the 32 species or groups in the "Abundant" category are presented by stations and months in Table 6.

Table 5. Test recombinations of identified and unidentified forms of the genera Ankistrodesmus, Melosira, and Stephanodiscus. See text for explanation. Dashes indicate that the station was not occupied in that month.

Ankistrodesmus spp. (recombined)

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	18	12	-	7	12	8	9	6	4
May	21	23	6	10	7	8	12	4	11
Jun	0	10	7	11	6	6	9	21	12
Jul	0	2	-	1	5	1	0	2	2
Aug	0	4	0	-	4	0	2	4	2
Sep	1	2	0	-	1	1	1	2	1
Oct	2	0	-	-	2	1	0	0	0
Nov	1	1	0	-	0	1	1	0	1

MeZosira spp. (recombined)

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	15	28	-	35	46	45	19	28	0
May	16	13	1	6	6	7	7	13	51
Jun	11	11	37	18	12	6	11	3	7
Jul	1	0	-	0.5	0	0	0	0	0
Aug	4	4	6	-	2	0.5	2	0	0
Sep	5	35	28	-	4	6	0	0	0
Oct	870	527	-	-	978	370	440	77	8
Nov	162	82	50	-	73	126	34	13	6

Stephanodiscus spp. (recombined)
cells/ml

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	213	26	-	30	28	32	22	54	5
May	17	94	44	53	75	64	71	38	1
Jun	378	328	1,035	425	111	85	108	67	69
Ju1	2	5	-	9	3	0	1	0	0
Aug	6	12	23	-	15	14	8	2	0
Sep	1	2	4	-	0	1	1	1	0
Oct	20	16	-	-	23	18	11	9	1
Nov	32	14	21	-	12	23	5	8	13

Table 6. The 32 abundant phytoplankton forms in the 1972 collections at the Cook Plant, by stations and months. Dashes indicate that the station was not occupied in that month.

Anabaena spp. (colonies)
cells/ml

	NDC-. 5-1	SDC-.5-1	$\underline{\mathrm{DC}-0}$	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0	0	-	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0
Jun	4	0	0	0	0	0	0	0	0
Jul	12	11	-	5	21	6	3	1	1
Aug	2	1	0	-	3	6	4	3	6
Sep	1	0.5	1	-	2	0.5	0.5	0.5	0
Oct	1	0	-	-	0	0	2	2	2
Nov	0	0.5	0	-	0	0	0.5	1	2

Ankistrodesmus spp.
cells/m1

NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
18	12	-	7	6	0	3	4	0.5
21	23	6	10	7	8	12	4	6
0	10	7	11	6	6	9	21	12
0	2	-	1	0	0	0	0	0
0	0	0	-	0	0	0	0	0
0	0	0	-	0	0	0	0	0
0	0	-	-	0	0	0	0	0
0	0	0	-	0	0	0	0	0

Asterionella formosa
cells/ml

	NDC-. 5-1	SDC-.5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	23	0	-	2	0	1	2	2	0
May	77	135	77	93	73	91	56	16	0
Jun	22	7	0	6	14	13	16	45	47
Jul	1	0	-	0	0	1	0	2	5
Aug	4	2	7	_	6	7	4	32	8
Sep	4	28	34	-	13	3	0	0	9
Oct	44	25	-	-	84	44	43	15	9
Nov	155	93	180	-	48	82	28	11	8

Table 6, cont'd.

Chlamydomonas spp.
cells/m1

| NDC-. $5-1$ | SDC-. $5-1$ | DC-0 | $\frac{D C-1}{2}$ | $\frac{D C-2}{}$ | $\frac{D C-3}{}$ | $\frac{D C-4}{}$ | $\frac{D C-5}{}$ | $\frac{D C-6}{}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | 83 | - | 72 | 116 | 178 | 163 | 116 | 57 |
| 14 | 16 | 2 | 6 | 25 | 54 | 27 | 9 | 38 |
| 85 | 9 | 15 | 6 | 6 | 115 | 9 | 4 | 13 |
| 0 | 19 | - | 2 | 1 | 0 | 0.5 | 3 | 0 |
| 0 | 0 | 0 | - | 1 | 0 | 0 | 0 | 0.5 |
| 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
| 6 | 0 | - | - | 0 | 1 | 0 | 0 | 3 |
| 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |

Chroococcus spp. (mostly Iimeticus)
$\mathrm{cells} / \mathrm{ml}$

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0	0	-	0	0	0.5	0	0	0
May	0	0	0	0	0	0	0	0	0.5
Jun	0	0	0	0	0	0	0	0	2
Jul	0	0	-	0	0	0	0	0	0
Aug	0	0	4	-	1	0	0	0	2
Sep	83	106	32	-	137	142	240	279	288
Oct	100	38	-	-	128	117	166	219	462
Nov	58	60	33	-	41	86	95	47	119

Cryptomonas spp.

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	$\underline{D C-6}$
Apr	12	49	-	44	28	21	21	19	7
May	9	14	2	14	3	4	6	3	9
Jun	0	11	59	6	6	0	6	8	2
Jul	1	2	-	0	2	1	2	0	1
Aug	1	1	0	-	5	6	4	15	12
Sep	7	13	4	-	9	12	3	10	8
Oct	38	17	-	-	26	16	10	12	25
Nov	5	2	2	-	3	7	4	0	1

Table 6, cont'd.

Cyclotella kutzinginiana
cells/ml

	cells/ml								
	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0	0	-	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0
Jul	0	0	-	0	0	0	0	0	0.5
Aug	0	1	0	-	1	2	2	4	0
Sep	0	0	0	-	0	0.5	0	0	0
Oct	3	6	-	-	5	5	7	3	3
Nov	18	7	9	-	7	10	6	2	2

Cyclotella stelligera
cells/ml

	NDC-.5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	1	0	-	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0
Jul	4	0	-	0	5	4	2	20	45
Aug	5	7	0	-	0	0	0	1	0
Sep	0	0	0	-	0	0	0	0	0
Oct	2	3	-	-	0	3	1	0	1
Nov	10	5	0	-	2	6	3	5	3

CycloteZla spp.

NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
237	0	-	0	0	2	3	6	0
98	135	96	48	66	100	73	64	0
40	429	1,710	323	174	4	159	146	224
1	0	-	0	1	0.5	4	1	2
1	1	15	-	9	6	8	4	9
0.5	0.5	1	-	0	0.5	0.5	0	0
0	1	-	-	0	1	0	1	0
4	4	2	-	4	5	1	2	0.5

Table 6, cont'd.

Diatoma tenue v. elongation

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0	23	-	49	18	16	22	8	0
May	0	0	0	0	0	0	0	0	1
Jun	0	0	0	2	3	0	9	19	13
Jul	0	0	-	0	0.5	0	0	0	0
Aug	0.5	0	0	-	0	0	0	0	0
Sep	0	0	0	-	0	0	0	0	0
Oct	2	0	-	-	2	0	1	0.5	0
Nov	0	0	0	-	0	1	0	0	0

Dinobryon divergens

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3		DC-4	DC-5	DC-6
Apr	6	23	-	19	13	12		5	3	0
May	5	13	6	5	18	16		14	38	5
Jun	0	8	11	14	22	2		35	63	17
Ju1	7	20	-	24	4	1		0	3	5
Aug	1	1	10	-	0	0		0		0
Sep	2	15	0	-	14	12		12	8	5
Oct	0	0	-	-	0	0		2	0	0
Nov	0	0	0	-				0	0	0

Dinoflagellates

Table 6, cont'd.

Flagellates
$\mathrm{cells} / \mathrm{ml}$

	cells/ml								
	NDC-. 5-1	SDC-.5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	122	223	-	132	68	25	14	37	27
May	240	396	43	229	225	440	297	290	196
Jun	0	104	93	58	51	0	108	95	91
Jul	15	0	-	5	39	30	6	67	44
Aug	12	14	6	-	28	26	39	73	109
Sep	13	19	3	-	15	18	15	51	11
Oct	244	210	-	-	267	224	172	69	143
Nov	245	152	32	-	31	187	144	52	164

Fragilaria copucina
cells/ml

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	1	0	-	0	0	3	0	2	
May	8	87	36	40	41	23	24	0	
Jun	193	0	523	48	36	0	93	96	40
Jul	19	3	-	22	28	0	0	0	
Aug	0	0	4	-	2	0	0	0	
Sep	20	0	0	-	0	0	0	0	
Oct	0	0	-	-	61	0	0	0	
Nov	18	3	0	-	0	28	0	0	

Fragilaria crotonensis

	NDC-. $5-1$	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	18	30	-	9	21	23	12	11	0
May	36	74	41	101	43	65	49	39	2
Jun	0	107	104	6	17	32	16	6	6
Jul	0	12	-	9	15	0	11	12	55
Aug	275	160	234	-	221	111	194	333	249
Sep	15	41	72	-	27	13	6	13	1
Oct	299	144	-	-	276	89	211	14	16
Nov	306	96	1,185	-	134	446	49	47	52

Table 6, cont'd.

Fragilaria intermedia

	NDC-.5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0.5	7	-	2	28	16	- 10	24	0
May	59	105	31	113	5	13	0	9	1
Jun	0	24	612	114	19	46	12	2	76
Jul	0	2	-	37	1	0	0	0	0
Aug	0	1	13	-	0	0	0	0	0
Sep	0	0	0	-	0	0	0	0	0
Oct	12	10	-	-	0	6	0	0	0
Nov	18	10	63	-	0	10	0	0	0

GZenodinium spp.
cel1s/m1

NDC-.5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
14	28	-	16	19	15	21	13	0.5
1	3	0	3	6	8	3	13	0
0	4	0	6	1	0	3	6	5
9	15	-	9	7	9	4	4	0
3	1	4	-	3	1	1	2	0.5
0	0.5	3	-	1	1	1	1	0
0	0	-	-	2	0	0	0	0
0	0	0	-	0	0	0	0	0

Gloeocystis spp.

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	105	118	-	132	133	116	58	56	14
May	70	233	42	89	18	81	29	41	27
Jun	0	8	119	1	4	19	19	43	16
Jul	21	1	-	0	47	48	6	59	11
Aug	18	44	35	-	52	88	53	89	200
Sep	28	55	10	-	33	66	60	75	99
Oct	63	88	-	-	46	71	18	15	37
Nov	51	17	315	-	77	42	31	2	16

Table 6, cont'd.

Melosira granulata
cells/m1

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0	0	-	0	1	0	0	0	0
May	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0
Jul	1	0	-	0	0	0	0	0	0
Aug	4	4	6	-	2	0.5	2	0	0
Sep	3	34	27	-	4	6	0	0	0
Oct	858	524	-	-	866	355	439	74	6
Nov	162	82	50	-	73	126	34	13	6

Melosira granulata v. angustissima

	NDC-.5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0	0	-	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0
Tun	0	0	0	0	0	0	0	0	0
Jul	0	0	-	0	0	0	0	0	0
Aug	0	0	0	-	0	0	0	0	0
Sep	0	1	0	-	0	0	0	0	0
Oct	10	3	-	-	110	12	0	2	0
Nov	0	0	0	-	0	0	0	0	0

MeZosira islandica
cells/m1

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	$\underline{\text { DC-6 }}$
Apr	9	0	-	7	34	34	17	24	0
May	0	1	0	0	1	0	0	0	51
Jun	0	0	0	0	0	0	0	0	0
Jul	0	0	-	0	0	0	0	0	0
Aug	0	0	0	-	0	0	0	0	0
Sep	2	0	1	-	0	0	0	0	0
Oct	0	0	-	-	0	0	0	0	0
Nov	0	0	0	-	0	0	0	0	0

Table 6, cont'd.

MeZosira spp.

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	$\underline{\text { DC-6 }}$
Apr	6	28	-	28	11	10	2	4	0
May	4	6	1	3	3	2	1	6	0
Jun	0	6	33	12	11	2	5	3	3
Jul	0	0	-	0.5	0	0	0	0	0
Aug	0	0	0	-	0	0	0	0	0
Sep	0	0	0	-	0	0	0	0	0
Oct	0	0	-	-	0	0	0	0	0
Nov	0	0	0	-	0	0	0	0	0

Nitzschia spp.

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	1	0	-	0	3	0	1	2	0
May	3	0	0	0	0.5	0	0	0	0
Jun	4	1	7	2	0	0	0	0	6
Ju1	8	0	-	1	1	0	0	0	0
Aug	0.5	0	2	-	0.5	0.5	0	0	0
Sep	2	4	10	-	0	0	0	0	0
Oct	8	7	-	-	1	3	2	0.5	0
Nov	4	3	0	-	3	3	2	0.5	2

Oocystis spp.
cells/m1

				cell	s / ml				
	NDC-. $5-1$	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	$\underline{\text { DC-6 }}$
Apr	0	2	-	2	0.5	1	0.5	0	1
May	0	0	0	0	0	0	0	0	1
Jun	0	5	4	1	0	0	1	1	1
Jul	18	0	-	3	39	9	0	21	1
Aug	10	10	7	-	7	15	15	11	26
Sep	56	89	29	-	61	88	78	152	199
Oct	40	18	-	-	27	19	11	16	41
Nov	18	22	0	-	5	18	12	16	17

Table 6, cont'd.

Rhizosolenia gracilis

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	11	16	-	25	49	40	35	25	2
May	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0
Jul	0	0	-	0	0	0	0	0	0
Aug	0	0	0	-	0	0	0	0	0
Sep	0	0	0	-	0	0	0	0	0
Oct	0	0	-	-	0	0	0	0	0
Nov	0	0	0	-	0	0	0	0	0

Rhizosolenia sp. (unidentified)

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	4	0	-	0	0	0	0	0	0
May	5	2	0	1	5	8	6	23	33
Jun	0	0	0	3	2	5	0	2	2
Jul	0	0	-	0	0	0	0	0	0
Aug	0	0	0	-	0	0	0	0	0
Sep	0	0	0	-	0	0	0	0	0
Oct	0	0	-	-	0	0	0	0	0
Nov	0	0	0	-	0	0	0	0	0

Scenedesmus quadricouda

	cells/ml								
$=$	NDC-.5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0	0	-	0	0.5	0	0.5	0	0
May	0	0	0	0	0	0	0	0	0
Jun	0	1	4	0	0	0	1	0	0
Jul	6	0	-	0	6	4	0	0	917
Aug	2	0	0	-	0	0	0	0	0
Sep	0	0	0	-	0	0	0	0	0
Oct	21	0	-	-	8	9	0	0	0
Nov	0	7	0	-	5	0	0	1	0

Table 6, cont'd.

Scenedesmus spp.
cells/m1

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	13	7	-	7	16	20	13	14	1
May	31	26	16	11	10	14	6	9	10
Jun	15	17	48	13	18	6	24	19	30
Jul	0	2	-	1	0	0	0.5	0	0
Aug	0	0	7	-	1	0	4	2	42
Sep	0	6	1	-	1	2	1	0	0
Oct	0	19	-	-	0	2	0	4	0
Nov	2	0	0	-	2	2	2	0	0

Stephanodiscus alpinus
cells/m1

	cells/ml								
	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	0	0	-	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0
Jun	103	0	0	0	0	7	0	0	0
Jul	0	0	-	0	0.5	0	0	0	0
Aug	3	2	0	-	1	2	1	1	0
Sep	0	0	0	-	0	0	0	0	0
Oct	1	1	-	-	5	3	3	0.5	0
Nov	8	1	9	-	2	3	0	1	1

Stephanodiscus spp.
cells/ml

	NDC-. 5-1	SDC-.5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	213	26	-	30	28	32	22	54	5
May	17	94	44	53	75	64	71	38	1
Jun	378	328	1,035	425	111	85	108	67	69
Jul	2	5	-	9	0	0	0.5	0	0
Aug	0.5	1	17	-	3	3	0.5	1	0
Sep	0.5	2	4	-	0	0.5	0.5	0.5	0
Oct	7	6	-	-	0	0	1	2	0.5
Nov	10	3	4	-	3	10	1	2	2

Table 6, cont'd.

synedra ulna

$\mathrm{cells} / \mathrm{ml}$

	NDC-.5-1	SDC-. 5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	2	0	-	0	0.5	1	1	0	0
May	4	2	6	8	6	6	4	0.5	0.5
Jun	26	13	45	9	4	9	13	26	5
Jul	0	0	-	0	0	0	0	0	0
Aug	0	0	0	-	0	0	0	0	1
Sep	0	0	0	-	0	0	0	0	0
Oct	3	2	-	-	6	0	1	0	1
Nov	6	0.5	0	-	2	2	2	0	0

TabeZlaria fenestrata

	cells/ml								
	NDC-.5-1	SDC-.5-1	DC-0	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
Apr	123	438	-	308	345	399	323	275	10
May	515	662	165	515	373	302	243	45	3
Jun	141	38	197	69	62	93	18	48	9
Jul	35	104	-	27	109	2	20	10	0
Aug	88	47	132	-	16	30	29	75	93
Sep	35	13	67	-	0	3	0	0.5	7
Oct	85	18	-	-	128	11	152	6	8
Nov	482	178	814	-	113	474	178	16	69

Table 7 is the eight months' total list of species and groups; this table also indicates "Abundant," "Rare," and "riverine" by A, R, and r on the left and shows on the right the total monthly collections of the rare forms at all stations. Species and forms are presented in the way in which they are recognized and counted. Examples are: Glenodinium, a dinoflagellate, is recognized and counted separately from unidentified dinoflagellates which are given as "Dinoflagellates;" the flagellates Cryptomonas and ChZamydomonas are recognized and counted separately from unidentified "Flagellates;" Anacystis and Chroococcus are recognized as separate entities, rather than as species of Anacystis.

Table 8 presents by month the dominant species or group in the collections, and the percentage of those organisms in the monthly collections. In no month did the dominant(s) heavily dominate the collections. The greatest dominance was 37% for Fragilaria crotonensis in August.

Table 9 gives the total numbers of cells per ml collected, the total numbers of species or groups (forms) recognized, and (for what it is worth as a measure of diversity) the mean numbers of cells per ml per form for each station in each month. This table indicates generally rather high numbers of cells per ml in April, May, and June. Low numbers of cells per ml appear to be typical in July, August, and September. October and November show, again, rather high cell counts.

Of the first three months, April had somewhat larger numbers of forms and lower mean numbers of cells per form than was true for May or June. The lower total cell counts in July, August, and September were not matched by a proportionate decrease in numbers of forms, and generally low mean numbers of cells per form were typical of these months. Increased cell counts in October and November were not accompanied by a proportionate increase in num-
Table 7. Master species list 1972 indicating "Abundant," "Rare," and "riverine" by A, R, and r on the left. Total monthly collections of rare forms at all stations

Chroococcus spp. (mostly Zimneticus)
Closteriopsis Zongissima Closteriopsis Zongissima Closterium aciculare
Closterium spp. Cocconeis spp.

Species

 Asterococcus Zimneticus Blue-green filaments Ceratium himundinella Chlamydomonas spp. Apr 4, May 4, Jul 0.5Apr 1, May 1,

 Cyclotella kutzinginiana Cyclotella meneghiniana
 Cyclotella stelligera
 Diatoma vulgare
Diatoma spp.
Dictyosphaerium spp.
Dinobryon cysts
Dinobryon divergens
 Diatoma vulgare
Diatoma spp.
Dictyosphaerium spp.
Dinobryon cysts
Dinobryon divergens Diatoma vulgare
Diatoma spp.
Dictyosphaerium spp.
Dinobryon cysts
Dinobryon divergens Dinobryon sociale Dinoflagellates Diploneis sp. 非1
 -dds ouว26ng

$$
\begin{aligned}
& \text { Total monthly collections of rare forms at all stations } \\
& \text { Aug } 0.5 \text {, Oct } 1 \\
& \text { Apr } 18 \text {, May } 3 \\
& \text { Apr } 0.5 \\
& \text { Jun } 3, \text { Oct } 3 \text {, Nov } 8 \\
& \text { Apr } 27 \text {, Jun } 6 \text {, Aug } 2.5 \\
& \text { Jul } 0.5 \\
& \text { Jul } 2, \text { Sep } 58 \\
& \text { Apr } 1, \text { Jun } 1, \text { Sep } 1 \\
& \text { Jun } 1, \text { Jul } 1.5 \text {, Sep } 43.5 \text {, Oct } 1.5 \text {, Nov } 4.5 \\
& \text { Apr } 0.5 \\
& \text { Apr } 1.5 \text {, May } 0.5, \text { Jul } 2 \text {, Sep } 1, \text { Oct } 1, \text { Nov } 2 \\
& \text { May } 0.5, \text { Jun } 17, \text { Jul } 8.5 \text {, Aug } 1, \text { Sep } 1 \\
& \text { Jun } 1 \\
& \text { Oct } 0.5 \\
& \text { Jul } 1.5 \text {, Aug } 1, \text { Sep } 0.5 \\
& \text { Oct } 11
\end{aligned}
$$

$$
\text { May 37, Jun } 43
$$

$$
\begin{array}{ll}
\text { Sep } 6, \text { Oct } 2 \\
\text { Sep } 16 \\
\text { Apr } & 0.5 \\
\text { Apr } & 0.5 \\
\text { Oct } & 0.5
\end{array}
$$

ladıe／con＇r．
Total monthly collections of rare forms at all stations
Apr 0.5, Oct 5
Apr 4，May 2.5, Jun 7, Jul 0.5, Aug 5, Sep 1, Oct 1, Nov 4.5
Apr 1, May 1, Jun 2, Jul 0.5, Sep 2, Nov 7
Sep 0.5, Oct 3.5
Oct 2.5, Nov 2

$$
\begin{aligned}
& \text { Oct } 15, \text { Nov } 7 \\
& \text { Oct } 5 \\
& \text { Jul } 0.5, \text { Sep } 0.5, \text { Oct } 9.5, \text { Nov } 7.5 \\
& \text { Oct } 1.5 \text {, Nov } 1 \\
& \text { Oct } 1 \\
& \text { Aug } 0.5, \text { Oct } 1, \text { Nov } 3.5 \\
& \text { Aug } 0.5, \text { Oct } 3 \\
& \text { Jul } 9, \text { Aug } 2.5, \text { Sep } 1, \text { Oct } 12 \text {, Nov } 8 \\
& \text { Jul } 2, ~ \\
& \text { Jun } 1, \text { Oct } 3, \text { Nov } 4.5 \\
& \text { Apr } 0.5, \text { Jun } 24, \text { Oct } 1.5 \\
& \text { Apr } 11.5, \text { Jul } 3, \text { Sep } 4, \text { Nov } 1
\end{aligned}
$$

Jun 1

	Species
R	Navicula tripunctata
R	Navicula spp．
R （r）	Nitzschia acicularis
R	Nitzschia acuta
R	Nitzschia angustata
R	Nitzschia bacata
R	Nitzschia capitellata
R	Nitzschia confinis
R	Nitzschia dissipata
R	Nitzschia filiformis
R	Nitzschia fonticola
R	Nitzschia frustulum
R	Nitzschia palea
R	Nitzschia paleacea
R	Nitzschia sp ⿰⿰三丨⿰丨三一1
$\mathrm{R}(\mathrm{r})$	Nitzschia sp ⿰⿰三丨⿰丨三一2
A	Nitzschia spp．
R	Oedogonium spp．
A	Oocystis spp．
R	Oscillatoria spp．
R	Pediastrum duplex
R	Pediastrum simplex
R	Pediastrum spp．
R	Peridinium spp．
R	Pinnularia spp．
R	Quadrigula lacustris
R	Rhizosolenia eriensis
A	Rhizosolenia gracilis
A	Rhizosolenia sp（unidentified）
R	Rhoicosphenia curvata

Table 7 con＇t．
Total monthly collections of rare forms at all stations

Apr 4，May 4．5，Jun 26，Aug 2．5，Sep 1，Oct 6，Nov 2.5
Oct 0.5, Nov 2.5
Nov 2
Oct 1, Nov 0.5
Apr 0.5, Nov 1.5
Oct 0.5, Nov 1

Stephanodiscus tenuis
Stephanodiscus transilvanicus
Stephanodiscus spp．
Surirella angustata
Surirella ovata v．pinnata
Synedra acus
Synedra delicatissima v．anaustissima
Synedra demerarae
Synedra filiformis
Synedra ostenfeldii

> wyrucuru

2727 ans snosipoupydars
Scenedesmus abundans
Scenedesmus bicellularis
Scenedesmus bijuga
Scenedesmus dimorphus
Scenedesmus falcatus

Scenedesmus Zongus
Scenedesmus opoliensis v．contracta
Scenedesmus quadricauda
Scenedesmus spp．
Schroederia spp．

> Sorastrum spinulosum
Sphaerocystis spp．
Spirogyra spp．
Stephanodiscus alpinus
Stephanodiscus astraea

号
正
かんのか
～
Total monthly collections of rare forms at all stations

Table 8. Monthly dominant forms and their abundance in the phytoplankton population in the monthly collections at the Cook Plant in 1972.

MONTH	DOMINANT FORMS	
April	TabeZZaria fenestrata	OF POPULATION
May	TabeZZaria fenestrata	33%
June	CycloteZZa spp.	29%
	Stephanodiscus spp.	28%
July	TabeZZaria fenestrata	23%
August	FragiZaria crotonensis	21%
September	Chroococal spp.	37%
October	MeZosira granuZata	35%
November	FragiZaria crotonensis	35%
	TabeZZaria fenestrata	26%

Table 9. Total numbers of cells per milliliter, total numbers of forms collected, and mean numbers of cells per form by stations and months in the 1972 Cook Plant phytoplankton collections.

	NDC-. 5-1	SDC-. 5-1	DC-0	DC-1	$\underline{\mathrm{DC}}$-2	DC-3	DC-4	DC-5	DC-6
APRIL									
cells/m1	1,056	1,139	-	929	964	997	792	716	133
no. forms	38	22	-	26	37	38	42	36	19
cells/form	28	52	-	36	26	26	19	20	7
MAY									
cells/m1	1,231	2,060	624	1,364	1,035	1,316	946	668	426
no. forms	25	30	22	27	34	26	26	21	32
cells/form	49	69	28	51	30	51	36	32	13
JUNE									
ce11s/ml	1,043	1,166	4,762	1,175	627	453	698	742	696
no. forms	16	30	29	33	30	19	31	27	26
cells/form	65	39	164	36	21	24	23	27	27
JULY									
cells/ml	173	202	-	156	355	134	66	218	182
no. forms	26	18	-	18	35	27	21	21	18
cells/form	7	11	-	9	10	5	3	10	10
AUGUST									
cells/m1	450	335	555	-	394	323	379	661	1,698
no. forms	32	31	27	-	36	27	26	29	28
cells/form	14	11	21	-	11	12	15	23	61
SEPTEMBER									
cells/ml	325	486	348	-	360	414	453	673	675
no. forms	28	36	35	-	24	28	22	22	19
cells/form	12	14	10	-	15	15	21	31	36

$$
\begin{aligned}
& \text { ざ }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllll}
-1 \\
0 \\
0
\end{array}
\end{aligned}
$$

bers of forms, and increased mean numbers of cells per form were typical of these months.

In addition to the contents of Table 9, there were other considerations in the choice of months for seasonal sampling: 1) April is the earliest month when ice conditions dependably allow us to operate a boat-borne survey; and 2) in the absence of evidence to the contrary, seasonal samplings should be on a three month spacing to enable the sampling of similar parts of the seasons. In accordance with these constraints, April, July, and October appear preferable as sampling months.

Table 9 indicates that collections in April 1972 caught a part of the spring bloom. July 1972 sampled the summer low of numbers. October 1972 samples were in the fall rise of numbers. On the evidence available, it appears that April, July, and October seasonal samplings are adequately representative of the spring, summer, and fall phytoplankton conditions.

Section 2. Biomasses, numbers and cell weights of Lake Michigan phytoplankton
 John C. Ayers and Erwin Seibel

Introduction

This study has been prompted by present concerns about the quantities of phytoplankton which will pass through the couk Plant. It aitempts to provide the best possible figures available at present for 1) the average mass per unit volume, 2) the mean number of cells per unit volume and 3) the approximate average weight of one phytoplankter. These figures, along with flow rates and percent of cells damaged, permit the refinement of previous estimates of phytoplankton damage due to plant passage.

The approach taken has been to obtain new data and to compare that data to information already established in the literature. The comparison of the nresent new data to already established data ras carried out to place the present data into perspective wit the limited array of information available on the subject.

The new data are derived from collections made on three transects of southern Lake Michigan in 1971 and 1972 by a project on the algal quality of Lake Michigan under the direction of Dr. Eugene F. Stoermer. These are supplenınted by data from collections made at the Cook Plant in 1970. The transects used by the Stoermer project run east-west across the lake from South Haven and St. Joseph and roughly north up the center of the lake from Burns Harbor. In each transect stations are logarithmically spaced by distance from shore. The transects are shown in Figure 2. All collections were made by Nansen or Nisken bottles; Stoermer's collections were from the whole water column, those at the Cook Plant were from one meter.

Extensive use has been made of particle counts made on the Stoermer collections.

The particle counts were made with a HIAC-'SS' Automatic Particle Counter manufactured by High Accuracy Product Corporation of Claremont, California. The 120 ml sample bottles were vigorously shaken 30 iimes by hand, inverted, and allowed to sit for three minutes. The inversion of the bottle and the period of rest permitted air bubbles to escape from the sample prior to countIng. After three minutes sitting the bottle was righted and 100 ml were counted at the manufacturer's recommended rate of $80 \mathrm{ml} / \mathrm{rinute}$. The shaking prior to counting breaks up coagulated particles and phytoplankton clumps, giving reproducibility of counts not obtainable with unshaken samples. Unfortunately the particle counter bilndly counts sediment particles and particles of detritus which it cannot distinguish from phytoplankton; it is consequently necessary to apply corrections to the raw counts from the machine. In addition, the counter attains maximum efficiency at only a given maximum sample-feed rate. Results from the particle counter must be used with the knowledge that the method contains inherent errors to be guarded against and corrected for.

In weight determinations, Stoermer's transect collections of March, April, and May 1972 were separated into onshore and offshore groups at a point 8 miles from shore. The 8 mile distance was chosen on the basis that chlorophyll values showed relative constancy for stations 8 miles or more from shore (see Figure 3 where chlorophyll values and the 8 mile distance are shown). The previously counted inshore and offshore samples were separately filtered by transect through air-dried preweighed Whatman No. 42 filter papers which were then air-dried under cover in the laboratory for 30 days, being weighed every third day until constant weight was reached. Weighings were made on a Mettler 454 Analytical Balance correct to the nearest microgram manufactured by Mettler Instruments AG of Zurich, Switzerland. Air

drying was deliberately selected to avoid oven decomposition of bicarbonate particles, and to leave the filtered samples conservatively large.

Results and Discussion

Mass per Unit Voiume Determinations
The mass per unit volume determinations for the months of March, April, and May 1972 were made on the inshore and offshore samples by using the dry weights of the samples and adjusting these weights to reflect the percentage of living phytoplankton to be expected in a typical sample of the season.

Robertson, Powers, and Rose (1971) showed that the dry weight of the sample when multiplied by the percent non-ash fraction gives an estimate of the particulate organic matter, and further, that to obtair the mass of livIng phytoplankton in the sample one must either subtiact the estmated a. mount of detritus or multiply the amount of particulate organic matter by the percentage of live phytoplankton present. The latter procedure is used in obtaining the mass per unit.volume for n en samples int this study and for the data presented by Powers et a1. (1957).

From Robertson et al. (1971) an estinate of the average percent of living phytoplankton in a given sample can be obrained. Their average sample contained 36.4% living phytoplankton, while the range was from $1.1 .8 \%$ to about 55% with the highest values occurring in May and November and consistently lower values during the summer months. The overall average mass/ volume of living phytoplankton for their cruises in 1967 was 0.33×10^{-3} grams per liter.

Stoermer (1968), using a completely different technique, found that the average mass/volume of phytoplankton in the vicinity of Grand Haven, Michigan, was about $0.48 \times 10^{-3} \mathrm{~g} / 1$.

Table 10 presents the data of the present study on samples from the spring
Table 10. Derivation of phytoplankton biomass per liter in 1972 inshore and offshore stations of Stoermer in southern Lake Michigan. Initial dry weight is of counted particles from Stoermer's collections.

$\underset{\star}{\mathrm{I}-0}$	$\begin{aligned} & \text { Dry weight } \\ & \mathrm{g} \mathrm{x} 10 \end{aligned}$	$\begin{gathered} \text { Ash-free dry } \\ \text { weight }{ }^{\star *} \\ \mathrm{~g} \times 10^{-3} \\ \hline \end{gathered}$	Phytoplankton wt. at 55\%*** g $\times 10^{-}$	Liters filtered	Phytoplagnkton g $\times 10^{-3} /$ iter	Transect
I	2.34	1.81	0.99	4.19	0.2387	
0	0.95	0.73	0.40	5.95	0.0672	
I	6.64	5.13	2.82	4.19	0.6730	March \& April)
0	2.59	2.00	1.10	6.00	0.1833	
I	5.20	4.02	2.21	3.70	0.5973	
0	0.32	0.25	0.14	4.60	0.0304	oseph
I	5.05	3.90	2.15	3.50	0.6143	Apri1)
0	1.07	0.83	0.45	4.60	0.1000	arch \& Apri1)
I	2.96	2.29	1.26	1.99	0.6332	
0	0.80	0.62	0.34	4.19	0.0811	
I	5.61	4.34	2.39	2.10	1.1381	Burns Harbor
0	2.43	1.88	1.03	4.30	0.2395	
I	2.52	1.95	1.07	2.10	0.5095	May)
0	2.39	1.85	1.02	4.39	0.2323	
OVERALL AVE. 0.3813						

[^1]of 1972. A correction factor from Robertson et al, has been applied to these data: their May average that 55% of particulate matter was livirg phytoplank.ton. Since the present data are from the spring, the 55% average is considered more applicable than their overall 36.4%.

Table 11 summarizes the data of Powers et al. (1967) for the years 1964, 1965, and part of 1966. Their overall average welght/volume of phytoplankton was $0.33 \times 10^{-3} \mathrm{~g} / 1$.

The available average values of phytoplanktur mass/volume are then:
Powers et al. (1967)

$$
\begin{aligned}
& 0.33 \times 10^{-3} \mathrm{~g} / 1 \\
& 0.48 \times 10^{-3} \mathrm{~g} / 1 \\
& 0.33 \times 10^{-3} \mathrm{~g} / 1 \\
& 0.38 \times 10^{-3} \mathrm{~g} / 1
\end{aligned}
$$

Stoermer (1968)
Robertson et a1. (1971)
Ayers, Seibel (this study)
Despite differences in techniques and data Ereatment, there is close agreement between the results of the four investigator teas.

Pliytoplankton Number per MilZiliter Determinations
In this section, as in the one before, presenc data are compared to existing literature data. The present data consist of corrected whole water column spring 1972 particle counts from the inshore and offshore staricns of Stoermer's algal water quality of Lake Michigan project. For comparison against these data there are: 1) whole water column particle counts for similar stations in lower Lake Michigan in 1902 and 1963 (U. S. Dept. Interior, FWPCA, 1968); 2) Ayers et al. (1971) one-meter microsccpic counts from 54 stations in a 7 -mile radius of the Cook Plant in July 1970; 3) unpublished microscopic counts from the surface two meters for inshore and offshore stations of Stoermer's algal water quality of Lake Michigan project in 1971; 4) State of Illinois (1971) inshore plankton counts from 1970; and 5) plankton counts of Damann (1966) from Chicago and Milwaukee water plants.

Table 11. Dry weight phytoplankton biomass per liter in multi-seasonal cruises of Powers et al.

DEPTH	0-25 m			>25 m		
	Particulate matter mg/1	Ash free $\mathrm{mg} / 1$	Phyto * mg/1	Particulate matter mg/1	Ash free mg / I	$\begin{gathered} \text { Phyto * } \\ \mathrm{mg} / 1 \end{gathered}$
$\begin{gathered} \text { Apr. }- \text { Nov. } \\ 1964 \end{gathered}$	2.055	0.990	0.3603	1.847	0.874	0.3181
$\begin{gathered} \text { Apr.-Nov. } \\ 1965 \end{gathered}$	2.163	1.043	0.3796	1.927	0.860	0.3130
$\begin{gathered} \text { Mar.-Jun. } \\ 1966 \end{gathered}$	2.560	0.969	0.3527	2.165	0.765	0.2784
AVE.	2.259	1.0007	0.3642	1.980	0.833	0.3032

All-depth ave. Weight/volume of Phytoplankton $=0.3336 \times 10^{-3} \mathrm{~g} / 1$
*Phytoplankton mg/l obtained by multiplying Ash Free Weight/Volume by 36.4\% ave. living phytoplankton in a sample.

Table 12 presents the results obtained by the present study for numbers of phytoplankters per milliliter in spring 1972. The correction factor -- 55\% of particles are phytoplankton, from Robertson et al. -- was applied to the particle counts. The two-month overall average for finshore stations was 1317 phytoplankters per milliliter, that for offshore stations was 443 per ml.

Table 13 shows the data reported by FWPCA for southern Lake Michigan stations in spring, summer, and fall of 1962 and 1963. No correction factor has been applied to these data as they are given as "Phytoplankton, numbers per milliliter." Their inshore stations showed spring counts of 1125 cells/ml (1962), 1639 cells/m1 (1963), and an overall 3-season average of $1443 \mathrm{cell} / \mathrm{s} / \mathrm{ml}$. Offshore stations had spring counts of 1168 cells/ml (1962), 416 cells $/ \mathrm{ml}$ (1963), and an overall 3-season average of 565 cells/ml.

Ayers et ai. (1971) at 54 inshore stations arounf the Cook Plant ottained a: overall average of $1256 \mathrm{cells} / \mathrm{ml}$ in July 1970.

The results of microscopical counts of phytoplankion from collections of Stoermer's cruises during 1971 are given in Table 14; these counts are from the upper two meters only and cannot reflect possible lower counts in the subsurface water layers as would his whole water colum particle counts (Table 12) and those of the FWPCA (Table 13). Stoermer's results give for irshore stations 4097 cells/ml with a 3-season average of 3013 cells/ml (spring), 2160 cells/ml (summer), and 2782 cells/ml (fall). His offshore stations give 1281 cells/ml (spring), 1062 cells/ml (summer), and 1855 cells/ml (fall). It is now believed that Stoermer's higher inshore surface microscopical counts are a reflection of his station locations $(1 / 4,1 / 2,1,2,4$, and 8 miles from shore) with their inherent weighting of stations close inshore, as well as their inability to incorporate possible lower counts from the underlying water layers of the deeper stations.

Some confirmation of this is found in a September 1971 report from the

Table 12. Numbers of phytoplankton per milliliter from spring 1972 whole water column particle counts. Data of Stoermer, southern Lake Michigan.

[^2]Table 13. Numbers of phytoplankton per milliliter in southern Lake Michigan in 1962-63. Data of FWPCA.

	$\begin{gathered} \text { Spring } \\ 62 \end{gathered}$	Summer 62	$\begin{gathered} \mathrm{Fa} 11 \\ 72 \end{gathered}$	$\begin{gathered} \text { Spring } \\ 63 \end{gathered}$	$\begin{gathered} \text { Summer } \\ 63 \end{gathered}$
SOUTH HAVEN					
Inshore	1503	1590	4453	2552	X
Offshore	1184	562	110	416	X
ST. JOSEPH					
Inshore	X	1143	2259	1210	X
Of fshore	1153	291	577	X	X
BURNS HARBOR					
Inshore	748	171	418	1155	1106
Offshore	X	231	251	X	X
AVERAGE					
Inshore	1125	968	2377	1639	1106
Offshore	1168	361	313	416	X

$X=$ no data for that location for that time.
Microscopical cell counts from surface two meters only.

	$\begin{gathered} \begin{array}{c} \text { Cruise } \\ \frac{1}{2} \end{array} \\ \frac{31 \text { March }}{-} \\ 11 \text { April } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Cruise } \\ 2 \end{array} \\ \frac{13 \text { May }}{-} \\ 20 \text { May } \end{gathered}$	Cruise 3 12 June 27 June	$\begin{aligned} & \text { Cruise } \\ & \frac{4}{14 \text { July }} \\ & 20- \\ & 2 \text { July } \end{aligned}$		Cruise $\frac{6}{14 \text { September }}$ 23 September		Cruise 8 25 October - 30 October
SOUTH HAVEN Inshore Offshore	$\begin{aligned} & 4553 \\ & 1322 \end{aligned}$	$\begin{aligned} & 4645 \\ & 1135 \end{aligned}$	$\begin{array}{r} 1569 \\ 935 \end{array}$	$\begin{aligned} & 1503 \\ & 1000 \end{aligned}$	$\begin{array}{r} 1052 \\ 762 \end{array}$	$\begin{aligned} & 662 \\ & 377 \end{aligned}$	$\begin{aligned} & 2912 \\ & 3330 \end{aligned}$	$\begin{aligned} & 2070 \\ & 1457 \end{aligned}$
ST. JOSEPH Inshore Of fshore	$\begin{aligned} & 6949 \\ & 1775 \end{aligned}$	$\begin{aligned} & 2156 \\ & 1090 \end{aligned}$	$\begin{aligned} & 1610 \\ & 1691 \end{aligned}$	$\begin{aligned} & 899 \\ & 897 \end{aligned}$	$\begin{array}{r} 1514 \\ 997 \end{array}$	$\begin{aligned} & 864 \\ & 648 \end{aligned}$	$\begin{aligned} & 3894 \\ & 2559 \end{aligned}$	$\begin{aligned} & 4101 \\ & 2699 \end{aligned}$
BURNS HARBOR Inshore offshore	$\begin{aligned} & 4602 \\ & 1638 \end{aligned}$	$\begin{array}{r} 1677 \\ 725 \end{array}$	$\begin{aligned} & 8083 \\ & 1635 \end{aligned}$	$\begin{array}{r} 1271 \\ 705 \end{array}$	$\begin{array}{r} 1936 \\ 937 \end{array}$	$\begin{array}{r} 1747 \\ 982 \end{array}$	$\begin{aligned} & 4911 \\ & 3138 \end{aligned}$	$\begin{aligned} & 3877 \\ & 1507 \end{aligned}$
Inshore Offshore	\quad Sprin 4097 1281	71		Summer $\quad 17$ 2160 1062			Fal1 '71 2782 1855	

All values are number of cells/ml

Illinois Environmental Protection Agency. Their Table 17 reports annual average numbers of plankton organisms per milliliter for 1970 from 10 water filtration plants from Waukegan to South Chicago. Their averages range from 2200 to 3600 from which we have computed an overall average of 2990 organisms/ml for the relatively close inshore water intakes represented. On the other hand their Table 31 reports average annual 1970 surface plankton densities from 8 stations at positions 4 miles offshore from the Wisconsin-Illinois State Line to South Chicago. These averages range from 700 to 2000 organisms/ml from which we have calculated an overall average of 1200 organisms/ml. Stoermer's inshore microscopical counts (3013 cells $/ \mathrm{ml}$) closely resemble the counts at the water plant intakes, while his inshore particle counts (1317 cells/ml) resemble a median-distance mean inshore station. That the Illinois 4-mile station surface plankters could represent whole water column plankton densicies is attributed to the upwind positions of the stations and to frequent upwellings.

Damann (1966) presents long-term average monthiy plankton counts from water filtration plants at Chicago and Milwaukee. He obtained annual averages of 1018 at Chicago and 779 ce11s/m1 at Milwaukee.

There are, then, available:
Inshore Offshore

FWPCA multiseasonal ave. 1962-63	1443	565
Stoermer (this study) spring 1972 ave.	1317	443
Stoermer 1971 multiseasonal ave.	3013	1399
Damann Chicago ave. 1928-45	1018	-
Damann Milwaukee ave. 1940-63	779	-
Illinois EPA multiseasonal ave. 1970	2990	1200
	Averages	1760

Weight of an Average Individual Phytoplankter
From Stoermer's particle counts and our dry weights of his counted particles the weight of an average phytoplankter has been calculated. Again, the correction factor that 55% of spring particles are live phytoplankters has been used.
(Table 15) presents results of the calculations. The weight of an individual phytoplankter in the samples analysed ranged from 0.075×10^{-9} grams to 1.2×10^{-9} grams. Inshore stations commonly gave a higher weight per phytoplankter than did the offshore stations. The overall inshore station weight was $0.57 \times 10^{-9} \mathrm{gm}$ per individual, while the offshore individuals averaged $0.38 \times 10^{-9} \mathrm{gm}$. The average of the two was $0.47 \times 10^{-9} \mathrm{gm} / \mathrm{cell}$.

The only valid comparison to literature values that was possible was with the laboratory data of Nalewajko (1966), who used 28 species of freshwater algae that correspond very well to the algal species of Lake Michigan. Nalewajko's results show cell weights ranging from $0.01 \times 10^{-9} \mathrm{gm}$ to $1.3 \times 10^{-9} \mathrm{gm}$, with an overall average of $0.4 \times 10^{-9} \mathrm{gm} / \mathrm{cell}$. The range and average are in good agreement with our results.

As additional estimates, our $0.38 \times 10^{-3} \mathrm{~g} / 1$ of phytoplankton biomass (Table 10) was divided by Damann's long-term Chicago and Milwaukee plankton counts (1018 and 779 respectively) and also by the grand mean of inshore counts (1760) obtained in the preceeding section. The results with Damann's counts were $0.37 \times 10^{-9} \mathrm{~g} / \mathrm{cell}$ and $0.49 \times 10^{-9} \mathrm{~g} / \mathrm{cell}$; with $1760 \mathrm{cells} / \mathrm{ml}$ we obtained $0.22 \times 10^{-9} \mathrm{~g} / \mathrm{cell}$.

Table 15. Average weights of individual phytoplankters in southern Lake Michigan 1972. Data from Stoermer.

			Total Count	55\% of Count	Dry weight $g \times 10^{-3}$	weight/ ce」l $g \times 10^{-9}$	Transect
March	72	I*	8334267	4583846	0.99	\bigcirc -	
March	72	0*	3551419	1953280	0.40	0.206	South Haven
April	72	I	9431024	5187063	2.82	0.544	
April	72	0	5811688	3196428	1.10	0.344	
March	72	I	9915986	5453792	2.21	0.405	
March	72	0	3346962	1840829	0.14	0.075	St. Joseph
April	72	I	7548626	4151744	2.15	0.517	
April	72	0	4008568	2204712	0.45	0.205	
March	72	I	4595256	2527390	1.26	0.498	
March	72	D	2793573	1536465	0.34	0.222	Burns Harbor
April	72	I	6273327	3450329	2.39	0.692	
April	72	0	4297765	2363770	1.03	0.437	
May	72	I	1731466	952306	1.07	1.126	
May	72	0	1507533	829143	1.02	1.227	

AVERAGE

Inshore	0.571
Offshore	0.388

*I $=$ Inshore stations; $\quad 0=$ Offshore stations.

The results available are then:

	Grams $\times 10^{-9}$		
Inshore	Ave.	Offshore	
This study (Ayers and Seibel)	0.57	0.47	0.38
Nalewajko ave.		0.4	
Damann Chicago count ave.	0.37		
Damann Milwaukee count ave.	0.49		
0.38×10^{-3} over 1760	Average	0.22	
		0.39	

As a magnitude check, the $0.33 \times 10^{-3} \mathrm{gm} / 1$ average multiseasonal lakevide phytoplankton weight per volume of Powers et al. (Table 1l) was divided by the available multiseasonal inshore-offshore grand average number of cells per liter. Stoermer's data of Table 13 and the FWPCA data of Table 14 met the requirements. In each the multiseasonal inshore and offshore averages were averaged together, and then the averaged averages of the two were averaged. The resulting grand average (1605 cells $/ \mathrm{ml}$) was then divided into 0.33×10^{-3} $\mathrm{gm} / 1$. The quotient so obtained was $0.2 \times 10^{-9} \mathrm{gm} / \mathrm{cell}$, a common value in the present study results (see Table 15).

SUMMARY AND CONCLUSION

Considering the varying techniques which had to be used and the variability of phytoplankton, favorable comparison was found between the results of this study and the scanty similar results presented by other investigators. Our results are:

1) the average weight of phytoplankton in the southern portion of Lake Michigan will range from about 0.09 to about 0.63 milligrams per liter of water. The average from this study is $0.38 \mathrm{mg} / \mathrm{l}$.
2) The average numbers of phytoplankton in the whole water column in southern Lake Michigan will range from about 300 per $m 1$ to several thousand per ml . The results of this study indicate (Tables 12 and 13) average numbers of 1760 per ml for inshore stations and 900 per ml for offehore stations.
3) The average weight of a single "mean phytoplanktex" in southern Lake Michigan was found to range from $0.075 \times 10^{-9} \mathrm{gram}$ to $1.2 \times 10^{-9} \mathrm{gm}$. The average weight at inshore stations was $0.57 \times 10^{-9} \mathrm{gm}$; that at offshore stations was $0.38 \times 10^{-9} \mathrm{gm}$. The overall average from all available data was $0.39 \times 10^{-9} \mathrm{~g} / \mathrm{ce} 11$.

LITERATURE CI'TED

Ayers, J. C., W. L. Yocum, H. K. Soo, ' C . W. Boctrell, S. C. Mozley, and L. C. Garcia. 1971. Benton Harbor Power Plant Limnological Studies, Part IX. The biological survey of 10 July 1970. University of Michigan, Great Lakes Research Division, Spea. Rep. 44, 72 p.

Damann, K. E. 1966. Plankton studies of Lake Michigan ITI. Seasonai periodicity of total plankton. Proc. 9th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res., P. 9-17.

Nalewajko, C. 1966. Dry weight, ash, and volume data for some freshwater plankton algae. J. Fish. Research Board Canada 23: 1285-1288.

Powers, C. F., A. Kobertson, S. C. Czaika and W. P。Alley, 1967. Lake Michigan biological data, 1964-966. University of Michigan, Great Lakes Research Division Spec. Rep. 30, p. 179-227.

Robertson, A., C. F. Powers, and J. Rcse. 1971. Distribution of chlorophyll and its relation to particulate organic matter in the offshore waters of Lake Michigan. Proc. 14 th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res., p. 90-101.

State of Illinois Environmental Protection Agency. 1971. Lake Michigan open water and lake bed survey 1970. 78p.

Stoermer, E. F. 1968. Nearshore phytopiankton population in the Grand Haven, Michigan vicinity during thermal bar conditions. Proc. llth Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res., p. 137-150.
U. S. Department of the Interior, Federal Water Pollution Control Administration. 1968. Water quality investigations, Lake Michigan BasinBiology. FWPCA, Chicago, Illinois. 41 p.
A. 3 Development of a Monitor for Phytoplankton

Although never a specified requirement, we early envisioned the advantages of a system which simultaneously measured phytoplankton chlorophyll fluorescence and counted passing particles. In particular, we envisioned this system as reducing the necessity for huge numbers of samples for microscopical plankton counts with their unavoidable time lag to produce results. Our efforts in this direction have had some modest success but have been surpassed by the development of commercial fluorometers and particle counters. Because of these and rising pressures for expanded biological studies directly related to the Cook Plant, we have concluded that the development of a phytoplankton monitor as originally envisioned is partly unfeasible, partly unnecessary, and should be abandoned. This section will henceforth be ABANDONED.

A. 4 Study of Attatched Algae
Erwin Seibel, Nancy Schrank, and Susan L. Williams

Introduction

This portion of the report continues the reporting of data on periphyton begun last year. A total of four periphyton collectors, each bearing duplicate collecting surfaces (see Figure 4), were set in water depths of 15 and 30 feet along the north and south property boundaries of the Donald C. Cook Nuclear Power Plant site.

We had planned to collect the periphyton samples by changing the collector blocks each month. While blocks were removed each month from May through November, not all locations provided samples. The surface buoys for both of the southern locations sank and were not recovered, preventing sampling at these sites. In addition, the surface buoy at the 30 foot depth at the north boundary was lost by September, preventing data here after that time. Problems encountered in removing the periphyton from its substrate resulted in the absence of data for the months of May, June, and August as far as the weight calculations were concerned. For the identification of the periphyton, a different technique which worked well for all months was used. This technique and data are presented later in this section.

Method

As was noted above, problems were encountered in removing the periphyton from the substrate for weighing purposes. We undertook a study to find the solvent most efficient in the removal process and finally concluded that benzene was the most effective solvent of the styrofoam.

Figure 4. Schematic representation of typical periphyton collector site.

Styrofoam collection blocks were removed from the collectors in the field and frozen. Small square food-freezing plastlc containers with an inner bottom of plywood and a central upright nall were used for freezing. The sample blocks were dropped over the nails and keyt Erom contacting the container sides.

The method which was adopted for separating the periphyton from the styrofoam blocks is presented below. The frozen styrofoam blociks were removed from the freezer and the dimensions of all sides were taken. Issing a mirotome knife, thinly sliced portions of the styrofoam-peripirton vere placed into a 100 ml beaker and allowed to sit for about thixty minutes (usually sufficient time to dry the sample under an air hood). 100 m of benzenc were then added to the sample; once the styrofoam was dissolved the sample was drawn through a preweighed glass finer filtex separating the styrofoam-benzene solution from the periphyton. The sample in the iunnel aa rirsed with 200 ml of benzene to assure total removal of the styrofoam and to wash the periphyton from the funnel walls orto the filuer. The fincer was tert air dried and weighed. Since benzene was used, the entire process just describod was done under an air hood for safety.

Discussion and Gesults

The information obtained monthly was:
a. Periphyton weight per side of the styrofoam block
b. Dimensions and areas of the collecting surfaces
c. Total periphyton weight per block
d. Weight/area of each collecting surface
e. Weight/area of the total collecting surfaces
which indicated the apparent average periphyton growth per month.

The data for the four months in which data were obtained are tabulated in Table 16. Two things are evident upon analysis of the data. First, one side of the styrofoam block consistently had a higher weight and weight/area ratio than the other sides. Two sides had similar weights while the final collecting surface was generally lower. It is suggested that the collecting surface having the greatest weight is the one that faces upward, while the one having the lowest weight and, therefore, the lowest concentration of periphyton should be the collecting side that faces the lake bottom. Second, the samples of July and September had similar weight/area ratios while the samples collected in the beginning of October and November showed a higher weight/area ratio.

In one sense the data are limited in that they are from north of the plant alone, which prevents a comparison of the data north and south as was initially intended. The next field season's data will hopefully allow for a north-south location comparison.

Species Identification

Preparation of Periphyton Slides: Diatoms are removed from the styrofoam substrate by a reaction of hydrogen peroxide and potassium dichromate. The blocks are placed into a beaker, and hydrogen peroxide, which has attained room temperature, is then added. Enough hydrogen peroxide is poured into the beaker to cover the block as it is submerged by a metal weight. Some floating of the styrofoam block does occur, but the reaction of the hydrogen peroxide will cover all surfaces sufficiently to enhance the removal of the periphyton from the substrate. A few crystals of potassium dichronate are added at a time as the beaker is swirled. The addition of potassium di-

Table 16. Collectors' areas, dry weights, weight/area ratio, , ${ }^{\text {mand }}$ apparent average monthly growth of periphyton off the Cook Plant.

Date and Identification	Side	```Area of Collecting Side \(\mathrm{cm}^{2}\)```	$\begin{gathered} \text { Dry Weight } \\ \text { of } \\ \text { Periphyton } \\ \text { mg } \end{gathered}$	$\begin{gathered} \mathrm{W} / \mathrm{A} \\ \mathrm{mg} / \mathrm{cm}^{2} \end{gathered}$
$\begin{gathered} 16 \text { Jul } 72 \\ \text { N30A } \end{gathered}$	1	33.15	58.56	1.76
	2	32.64	47.18	1.44
	3	31.50	46.43	1.47
	4	32.00	35.57	1.11
$\begin{aligned} & 16 \text { Jul } 72 \\ & \text { N15A } \end{aligned}$	Total	129.29	187.74	1.45*
	1	32.00	87.44	2.73
	2	33.15	61.43	1.85
	3	33.50	39.86	1.18
	4	34.68	52.37	1.51
$\begin{gathered} 10 \mathrm{Sep} 72 \\ \mathrm{~N} 15 \mathrm{~A} \end{gathered}$	Total	133.33	241.10	1.80*
	1	32.13	50.25	1.56
	2	32.13	38.17	1.18
	3	32.13	25.07	0.78
	4	31.11	35.49	1.14
$\begin{aligned} & 6 \text { oct } 72 \\ & \text { N15A } \end{aligned}$	Total	127.50	148.98	1.16*
	1	30.00	225.83	7.52
	2	32.00	42.21	1.31
	3	31.11	39.93	1.28
	4	31.50	45.00	1.42
$\begin{aligned} & 1 \text { Nov } 72 \\ & \text { N15A. } \end{aligned}$	Total	124.61	352.97	2.83*
	1	31.50	804.03	25.52
	2	32.00	182.74	5.71
	3	31.50	104.92	3.33
	4	31.50	294.38	9.34
	Total	126.50	1386.13	10.95*

*Apparent average periphyton growth, mg dry weight/cm ${ }^{2} / \mathrm{month}$.
chromate speeds up the reaction. Sufficient potassium dichromate has been added when the mixture turns dark in color and bubbles slightly; usually much less than one gram is sufficient to produce these results. Excessive amounts of potassium dichromate cause the mixture to boil over the beaker which may result in a loss of periphyton. The reaction is considered complete when the color of the solution turns a deep yellow.

Once the block has been removed, the diatoms are permitted to settle for six or more hours. The liquid is now poured off, taking particular care not to lose any of the settlement. Distilled water is then added to the sediment and swirled and again allowed to sit. This process is repeated until the water remains clear and is without a yellow tint.

The mounting of the periphyton is as follows: suspend the sediment in distilled water, with the use of a dropper spread the sediment-water mixture onto a cover slip, and allow the water to evaporate. Once the water has evaporated, bake the cover slip on a hot plate set at 450 Watts for about ten minutes, following which place a drop of HYRAX in the middle of a labeled slide and place the cover slip, sediment side down, on the drop. Again, place the slide on the hot plate and leave it there until all the toluene has been boiled from the HYRAX. Then remove the slide and cover slip from the hot plate and reposition the cover slip, which may have moved in the boiling process, in the center of the slide, and gently tap it downward. The slide is now ready for examination under the oil immersion Leitz Ortholux Microscope using 1000X magnification.

The species identifications for the months of May, June, July, August, and October are presented in Table 17. The September slides did not permit counting. As observed, the species of diatom periphytes increases from May through October. There was no indication of Cladophora on the collecting blocks.

Table 17. Periphyton species 1ists. Sample Nisp, May 1972.

Achnanthes sp.
Asterionella formosa
Cyclotella Kützingiana
Cyalotella meneghiniana v. plana
Cyclotella michigariana
Cyclotella ocellata
Cyclotella pseudostelligera
Cyolotella stelligera
Cymbella ventricosa (Kutz)
Cymbella sp.
Diatoma tenue v. elongatum
Fragizaria capucina
Eragilaria construena v. minuta
Fragizaria crotonensis
Fragilaria intermeaia
Fragizaria pinnata v. iancettula
Gomphonema olivaceum
Gomphonema sp.
Melosira granulata
Melosira isZandica
Melosira italica
Navicula cryptocephala
Navicula decussis
Navicula latens
Navicula menisculus
Navicula menisculus v. upsaliensis
Navicula nyassensis fo. minor

Ja icoula radiosa
vivioula tripunktata
ivavicuza pp.
Neidium tuoium
Nitzsenia aoiculariodes
Nitzsconia aciculars s
Nivzechís conjinis
Vitzschia dissipata
Nitzschix ionaissima v. reveisa
introscivia palea
Mitascria so. (our \#6)
stephanodisous alpinus
Stephonodiscus is inderanus
Stephanodisum hantisehit
Siephariodisous minutus
Btephomodiesus temuis
Stepharodiscue sp. (our 仿)
surirelza anguetata Seneura contiteephaía
Sjne zer deliootissima
Sinne tru fitifomis
Synodra mimusoula
synecira ostenfetdii
Sjfedra rumperz
Sunectra winu
gimedra vaucrier lae
Tanellama jenestraia

Very common species

Diatoma tenue v. elongatum
Synedra minuscula
synedra vaucheriae

Common species
Asterionella formosa
Gomprionema olivaceum

Rare species
Achnanthes sp.
Navioula nuassensrs f. minor
Neidium dubium
Nitzechia Zongissima v. reversa
Stemhanodischis alpinus
Sumirella angusta

May periphyton slides were the first periphyton to be made and there was much air in the diatoms, making them hard to identify. There also was an unusual number of girdle views.

Table 17 con't. Sample N30B, June 13, 1972.

Achnanthes Zanceolata v. dubia
Amphipleura pellucida
Amphora ovalis
Asterionella formosa
Cocconeis diminuta
Cocconeis placentula
Cyclotella meneghiniana
Cyclotella meneghiniana v. plana
Cyclotella michiganiana
Cyclotella ocellata
Cyclotella operculata
Cyclotella stelligera
Cybella sinuata f. ovata
Cymbella subventricosa
Diatoma tenue v. elongatum
Diatoma vulgare
Fragilaria brevistriata
Fragilaria brevistriata v. inflata
Fragilaria construens v. minuta
Fragilaria intermedia
Gomphonema angustatum
Gomphonema olivaceum
Gomphonema parvulum
Hantzschia amphioxys
Melosira granulata
Melosira islandica
Melosira italica
Navicula capitata
Navicula cryptocephala
Navicula cmyptocephala v. intermedia
Navicula cryptocephala v. veneta
Novicuia decussis
Navicula gastrum
Navicula gregaria

Very common species

Asterionella formosa
Diatoma tenue v. elongatum
Navicula gregaria
Novicula cryptocephala
Navicula viridula
Nitzschia dissipata
Stephanodiscus minutus
Synedra capucina
Synedra rumpens
Synedra minuscuta
Synedra ulna
Synedra vaucheriae
Tabellaria fenestrata

Navicula lanceolata
Navicula menisculus v. upsaliensis
Navicula micropupula
Navicula minuscula
.Navicula mutica v. cohnii
Navicula rhyncocephala
Navicula seminulum
Navicula tripunktata
Navicula viridula
Navicula viridula v. avenacea
Neidium dubium
Nitzschia acicularis
Nitzschia acuta
Nitzschia bacata
Nitzschia confinis
Nitzschia dissipata
Nitzschia fonticola
Nitzschia thermalis v. minor
Nitzschia sp. (our \#1)
Rhoicosphenia curvata
Stephanodiscus alpinus
Stephanodiscus binderanus
Stephanodiscus hantzschii
Stephanodiscus minutus
Stephanodiscus subtilis
Stephanodiscus tenuis
synedra capucina
Synedra filiformis
synedra minuscula
Synedra ostenfeldii
Synedra rumpens
Synedra ulna
Synedra vaucheriae
Tabellaria fenestrata

Rare species

Achnanthes lanceolata v. dubia
Amphipleura pellucida
Cyclotella operculata
Cymbella sinuata f. ovata
Hantzschia amphioxys
Navicula mutica v. cohnii
Nitzschia thermalis v. minor
Rhoicosphenia curvata
Stephanodiscus binderanus

Table 17 con't. Sample N30B, July 16, 1972.
Achnanthes affinis
Achnanthes clevei v. rostrata
Achnanthes exigua
Achnanthes haukiana v. rostrata
Achnanthes lanceolata v. elliptica
Achnanthes linearis
Achnanthes minutissima
Amphipleura pellucida
Amphora ovalis
Amphora sp.
Asterionella formosa
Cocconeis placentula
Coscinodiscus subsalsa
Cyclotella comta
Cyclotella Kutzingiana
Cyclotella Kutzingiana v. radiosa
Cyclotella meneghiniana v. plana
Cyclotella michiganiana
Cyclotella ocellata
Cyclotella pseudostelligera
Cyclotella stelligera
Cymatopleura solea v. apiculata
Cymbella affinis
Cymbella microcephala
Cymbella prostrata
Cymbella subventricosa
Cymbella turgida
Diatoma tenue v. elongatum
Diatoma vulgare v. breve
Diploneis parma
Epithemia sp.
Fragilaria brevistriata v. inflata
Fragilaria capucina
Fragilaria construens
Fragilaria construens v. binodis
Fragilaria crotonensis
Fragilaria intermedia
Fragilaria leptostauron
Fragilaria pantocsekii v. binodis
Fragilaria parasitica
Fragilaria pinnata
Fagil.aria vaucheriae v. truncata
Gomphonema intricatum
Gomphonema olivaceoides
Gomphonema olivaceum
Gomphonema parvulum
Gomphonema subclavatum

Gyrosigma spencerii v. curvala
Melosira granulata
Melosira islandica
Melosipa italica
Merition circulare
Navicula capitata
Navicula capitata v. luneburgensis
Navicula amptocephaia
Navicula gastivm v. signata
Navicula gregaria
Navicuta grimmei
Navicula integra
Navicula menisculus
Navicula menisculus v. upsaliensis
Navicula menicropupula
Navicula nyassensis f. minor
Navicula platystoma v. pantocsekii
Navicula radiosa v. tenella
Navic:ila reinhardtii
Navicuila rhyncocephala
Navicula similis
Navicula tripunktata
Naviaula tuscula f. rostrata
Navioula viridula v. avenacea

Neidium dubium
ilitzschia acicularis
Nitzschiia angustata v. acuta
Nitzschia apiculata
Nitzschia bacata
Nitzschia caritellata
Nitzschia confinis
Nitzschia dissipata
Nitzschia fonticola
Nitzschia hungarica
Nitzschia insecta
Nitzschia Kutzingiana
Nitzschia macilenta
Nitzschia palea
Nitzschia recta
Nitzschia spiculoides
Nitzschia vexans
Nitzschia sp. (our 非)
Nitzschia sp. (our \#2)
Nitzschia sp. 1
Nitzschia sp. 2

Table 17 con't. Sample N30B, July 16, 1972 con't.

Stephonodiscus alpinus
Stephanodiscus astraea
Stephanodiscus binderanus
Stephanodiscus hantzschii
Stephanodiscus minutus
Stephanodiscus subtilis
Stephanodiscus tenuis
Stephanodiscus transilvanicus
Surirella angusta
Synedra dilicatissima
Synedra delicatissima v. angustissima

Synedra filiformis Synedra minuscula synedra ostenfeldii Synedra mumpens
synedra ulna
Synedra ulna v. claviceps
Synedra vaucheriae
Synedra vaucheriae v. capitata Synedra vaucheriae v. capitellata Synedra vaucheriae v. fragilariodes Tabellaria fenestrata

Very common species

Amphipleura pellucida
Asterionella formosa
Diatoma tenue v. elongatum
Fragilaria genus-except those listed as rare
Melosira granulata
Nitzschia genus-except those listed as rare
Synedra genus-except those listed as rare
Tabellaria fenestrata

Rare species

Achnanthes clevei v. rostrata Achnanthes haukiana v. rostrata Achnanthes lanceolata v. elliptica Achnanthes linearis Cocconeis placentula Coscinodiscus subsalsa cyclotella ocellata Cyclotella pseudostelligera Diploneis parma
Epithemia sp.
Fragilaria brevistriata v. inflata Fragilaria constmens v. binodis Fragilaria leptostauron
Fragilaria pantocsekii v. binodis Fragilaria parasitica Fragizaria vaucheriae v. truncata Gyrosigma spencerii v. curvala Meridion circulare Navicula gastrum v. signata Navicula grimmei
Navicula integra
Navicula nyassensis f. minor
Navicula platystoma v. pantoscekii
Navicula reinhardtii
Navicula simizis
Navicula tuscula f. rostrata
Neidium dubium
Nitzschia hungarica
Nitzschia insecta
Nitzschia Kutzingiana
Nitzschia macilenta
Nitzschia vexans
Nitzschia sp. 1
Nitzschia sp. 2

Table 17 con't. Sample N15B, August 1972

Achnanthes affinis
Achnanthes clevei
Achnanthes clevei v. rostrata
Achnanthes lanceolate
Achnanthes lanceolata v. dubia
Achnanthes lapponica
Achnanthes minutissima
Amphipleura pellucida
Amphora calumetica
Amphora cruciferoides
Amphora montana
Amphora normani
Amphora ovalis
Amphora ovalis v. libyca
Amphora ovalis v. pediculus
Asterionella formosa
Caloneis bacillum
Cocconeis diminuta
Cocconeis pediculus
Cocconeis placentula
Cyclotelia comta
Cyclotella cryptica
Cyclotella Kutzingiana
Cyclotelza meneghiniana
Cyclotella meneghiniana v. plana
Cyclotella michiganiana
Cyclotella ocellata
Cyclotella pseudostelligera
Cyclotella stelligera
Cymatopleura solea v. apiculata
Cymbella microcephula
Cymbella parvula
Cymbella prostrata
Cymbella subventricosa
Diatoma tenue v. elongatum
Diatoma vulgare
Diploneis parma
Eunotia arcus
Fragilaria capucina
Fragilaria construens
Fragilaria construens v. binodis
Fragilaria crotonensis
Fragilaria intermedia
Fragilaria leptostauron
Fragilaria pinnata
Fragilaria pinnata v. lancettula
Fragilaria vaucheriae v. fragilariodes
Fragilaria vaucheriae v. Ianceolata
Fragilaria vaucheriae v. truncata
Gomphonema clevei
Gomphonema intricatum

Gomphonema intricatum v. pumila
Gomphonema olivaceum
Cyrosigma spenserii
Melosira granulata
Melosira islandica
MELocira italica
Meridion circulare
Navicula aurora
Navicula anglica v. subsalsa
Navicula capitata
Navicula capitata v. nungarica
NavicuZa sapitata v. iuneburgensis
Navicula cruptocephala
Navicula cryptocephala v. intermedia
Navioula decussis
Novicula gastrwis
Navicula gregaria
Navicuza integra
Navicula Iatens
Navicula menisculus v. obtusa
Nanicula meniscuius v. upealiensis
Navicula mi rropupula
Navicula nyassensis f. minor
ilavicula platystoma v. pantosaekii
naviaula protracta
Navicuiza pupuia
Navicula pupuia v. rostrata
Navicuia radiosa v. teneila
Navicuila sirplex
Navicula seminuioides
Navicuila seminitum
Navicula tripunktata
Nevioula tuscula 1 . minor
Navicula viridula
Novicula sp. (our \#40)
Navicuia sp. (our \#78)
Neidium dubium
Nitzsenia acicuiaris
Nitzschia acuta
Nitzschia amphibia
Nitzschia angustata v. acuta
Nitzschia bacata
Nitzschia capiteIlata
Nitzschia confinis
Nitzschia dissipata
Nitzschia fonticola
Nitzschia insecta
Nitzschia macilenta
Nitzschia palea
Nitzschia recta
Nitzsehia romana

Table 17 con't. Sample N15B, August 1972 con't.
Nitzschia spiculoides
Nitzschia sublinearis
Nitzschia tryblionella
Nitzschia sp. (our \#1)
Nitzschia sp. (our \#2)
Nitzschia sp. (our \#8)
Oestmpia zachariasi v. undulata
Rhoicosphenia curvata
Stauroneis acutiuscula
Stephanodiscus alpinus
Stephanodiscus astraea
Stephanodiscus hantzschii
Stephanodiscus minutus
Stephanodiscus niagarae

Stephanodiscus subtilis
Stephanodiscus tenuis
Surire Zla angusta
Surire lla ovata
Synedra demerarae
Synedra delicatissima
synedra filiformis
synedra minuscula
Synedra parasitica
Synedra parasitica v. subconstricta
synedra ulna
Synedra vaucheriae
Tabellaria fenestrata

Very common species
Asterionella formosa
Diatoma tenue v. elongatum
Melosira granulata
Tabellaria fenestrata

Common species

Achnanthes minutissima
Amphipleura pellucida
Cyclotella meneghiniana v. planc
Cyclotella ocellata
Cyclotella stelligera
Cymbella microcephala
Fragizaria crotonensis
Fragilaria vaucheriae v. fragilariodes
Navicula cryptocephala
Navicula cryptocephala v. intermedia
Navicula decussis
Navicula Zatens
Navicula menisculus v. upsaliensis
Navicula micropupula
Navicula tripunktata
Navicula viridula
Nitzschia bacata
Nitzschia confinis
Nitzschia dissipata
Nitzschia fonticola
Nitzschia palea
Stephanodiscus genus
Synedra deZicatissima
Synedra minuscula
Synedra ulna
Synedra vaucheriae

Rare species

Achnanthes Zapponica
Amphora calumetica
Amphora cruciferoides
Amphora montana
Amphora mormani
Cocconeis diminuta
Cyclotella cryptica
Diatoma vulgare
Diploneis parma
Eunotia arcus
Gyrosigma spencerii
Navicula aurora
Navicula integra
Navicula platystoma v. pantoscekii
Navicula protracta
Navicula simplex
Navicula seminuloides
Navicula seminulum
Navicula tuscula v. minor
Navicula sp. (our \#40)
Navicula sp. (our \#78)
Nitzschia acicularis
Nitzschia amphibia
Nitzschia capitellata
Nitzschia maciZenta
Nitzschia romana
Nitzschia sublinearis
Nitzschia tryblionella
Nitzschia sp. (our 非8)
Oestrupia zacharasi v. undulata
Rhoicosphenia curvata
Stauroneis acutiuscula

Table 17 con't. Sample N15B, September 1972.

The two prepared slides were devoid of all materials.

Sample N15B, October 1972

Achnanthes affinis
Achnanthes levei
Achnanthes Ianceolata
Achnantlies lanceolata v. dubia
Achnanthes lanceolata 1. elliptica
Achranthes innearis
Achranthee miorocephaza
Achnanthes minutissima
Achnanthes suchiandit
Amphipleura peliucida
Armohora nommi i
Amphora ovalis
Amphoma ovaliss v. Libyca
Asterionelice formosa
Caloneis bacizlum
ialoneis ventricosa v. minutia
Cocooneis diminutio
Cocconeis placentuza
Cyclotella comta
Cyciotella cryptica
C'yoloteila Kuizingiana
Cyclotella meneghiniana v. plana
Cyclotella michiganiana
Cyclotella oceliata
Cyoloteiva veveudostelligera
Cuclotella stelligera
Cymú liza delisatuza
Cymbelta morocephaza
Cymbella prostrata
Diatoma tenue v. elongatum
Diatoma vulgare
Diploneis parma
Dipioneis coulata
Fragilaria brevistriata
Fragilaria brevistriatav. inflata
Fragilaria construens
Fragilaria construens v. binodis
Eragilaria constmens \because. capitata
Fragilaria constmens v. minuta
Fragilaria constmens v. venter
Fragilaria crotonensis
Fragilaria intermedia

Eragizaria ieptostauron
Fragilavia pantossekii v. binodis
Irogilaria parasitica v. subconstricta
Eragilaria pinnata
Fragilaria pinnata v. Iancettula
Fragiiaria vaucheriae
Fragilaria waucheriae v. frogilariodes
Gompienema angustatum
comphenema angustatum v. producta
Gomphenema gracile
tompheneme ozivaceum
Omphenema parvilum
Gypherema subczavatar!
Somphenema sp.
cymosigna spercerii v. mrouba
Melosina granulata
Stulosima ie bandica
Netorira italica
Navicula ariglica v. signata
Navicula bacitlum
Wuivicula capitata v. Iunteirgensis
Mavicula sostuiata
Narmuia aryptocephata
Navioula oryptocephata \because intesmedia
Navouía deoussis
Naicuia gregar-ic
Navicuia latens
moncura menisculusv. upsuliensis
Navicula micropupuza
Navicula mutica v. cohnii
Navicula nyassensie f. minor
Navicula protricto
Navicula pupula
Navicula tuscuza
Navicula viriaula
Navicuia sp. (our \#78)
Neidium dubium
Neidium: sp. (our \#4)
Nitzsonia mptribia
Nitzschia ancusta v. acuta
Nitzschia bacata
Nitzechia confinis

Table 17 con't. Sample N15B, October 1972 con't.

Nitzschia dissipata
Nitzschia fonticola
Nitzschia insecta
Nitzschia palea
Nitzschia recta
Nitzschia romana
Nitzschia tryblionella
Nitzschia wolterecki
Nitzschia sp. (our \#1)
Nitzschia sp. (our \#2)
Nitzschia sp. (our \#8)
Nitzschia sp.
Oestrupia zachariasi v. undulata
Rhoicosphenia curvata
Stephanodiscus alpinus
Stephanodiscus astraea
Stephanodiscus hantzschii
Stephanodiscus minutus
Stephanodiscus niagarae
Stephanodiscus subtilis
Stephanodiscus tenuis

Common species

Achnanthes minutissima
Asterionella formosa
Cyclotella comta
Cyclotella meneghiniana v. plana
Cyclotella ocellata
Cyclotella stelligera
Diatoma tenue v. elongatum
Fragilaria construens
Fragilaria vaucheriae
Melosira granulata
Navicula cryptocephala
Navicula cryptocephala v. intermedia
Nitzschia dissipata
Nitzschia fonticola
Nitzschia palea
Stephanodiscus astraea
Stephanodiscus hantzschii
Stephanodiscus minutus
Synedra acus
Synedra amphicephala v. austiaica
Synedra delicatissima
Synedra tenera
Synedra ulna (all varieties)
Synedra vaucheriae v. capitellata
Tabellaria fenestrata

Stephanodiscus transilvanicus
Surirella angusta
Surirella ovata
Synedra acus
Synedra amphicephala
Synedra amphicephala v. austraica
Synedra delicatissima
Synedra delicatissima v. angustissima
Synedra filiformis
Synedra hyperborea v. rostellata
Synedra minuscula
Synedra montana
Synedra ostenfeldii
Synedra pulshella
Synedra mumpens v. meneghiniana
Synedra tenera
Synedra ulna
Synedra ulna v. chaseana
Synedra ulna v. claviceps
Synedra vaucheriae v. capitellata
Tabellaria fenestrata

Rare species

Achnanthes clevei
Achnanthes linearis
Achnanthes suchlandti
Amphipleura pellucida
Amphora genus
Caloneis genus
Cocconeis genus
Cyclotella cryptica
Diatoma vulgare
Diploneis genus
Gomphonema sp.
Gyrosigma spencerii v. curvula
Navicula anglica v. signata
Navicula bacillum
Navicula mutica v. cohnii
Navicula tuscula
Neidium genus
Nitzschia tryblionella
Nitzschia wolterecki
Nitzschia sp.
Oestrupia zachariasi v. undulata
Rhoicosphenia curvata
Synedra hyperborea v. rostellata
Synedra montana
Synedra pulshella

A. 5 Study of Zooplankton

```
James C. Roth
```

Distribution of Samples in Space and Time

We report here the results of the 1972 zoopiankton collections. The data were collected at 140 stations in the Cook Plant survey area, distributed as follows:

Date, 1972		Number of Stations		
		Counted to Species	Counced to Genus	Total
12 April	(full survey, old grid)	5	41	46
4 May	(short survey)		5	8
11 June	(short survey)	,	5	8
16 July	(full survey, reduced grid)	5	24	29
11 August	(short survey)	3	4	7
8 September	(short survey)	3	4	7
15 October	(full survey, reduced grid)	5	23	28
3 November	(short survey)	- 30	4	7

The positions of the stations are shown in Figures 5 through 7. Samples were enumerated to the species level at five stations (DC-6, DC-5, DC-2; NDC-7--1; SDC-7-1) in each of the full surveys (April, July, and October), and at three stations (DC-6, DC-5, DC-2) in each of the short monthly surveys. The balance of the samples were enumerated to the genus level. After July 1972 station DC-1 could not be sampled because dredges installing the plant intake structures were anchored there.

Methods

Because changes have been instituted in zooplankton methods since the last report, the present methods will be described in some detail. The differences are primarily in laboratory handling and enumeration, and, although they are more time-consuming, we believe they are also more accurate.

Figure 5. Zooplankton stations sampled on 12 April 1972. Samples from the 5 circled stations were enumerated to species and those from the other 41 stations were enumerated to genus.

Figure 7. Zooplankt

At each station, a vertical haul from the bottom to the surface was made with a $1 / 2$ meter cone net of $\# 10$ nylon mesh (158μ apertures). This mesh size retains all adult cladocerans and copepods (including small species such as Tropocyclops prasinus), but probably does not quantitatively recover small nauplii or smail rotifers. A flowmeter placed in the moush of the met estimated the volume of water filtered. About $1-10 \mathrm{~m}^{3}$ of water were filtered, depending on the length of the tow. A small amount of carbon ditoxide (sparkling water, club soda) was added to each sample before preservation to relax the antarls; then they were preserved with Koechie's Fluid (a mixture of 750 ml saturated sugar solution, 300 ml concentrated formalin, and 2850 ml distilled water), which was used rather than formalin to further minimize distortion of the microcrustacea, in particular "ballooning" of cladoceran carapaces.

The samples were too large to count in their entirety, so they were subsampled In the laboratory with a Folsom plankton splitter. Splitters of this type provide more satisfactory subsamples than pipettes (Cassie, 19\%1). Each sample was split as many times as was needed to yield a subsample of manageable size which still permits statistical reliability. At each split the half which was used zor further splits or for counting was chosen at random (by tossiag a coini. Dupicate subsamples for counting were selected, each of which contained several hundred of the most common forms. The quantitative and qualitative objectives of the enum ration method, and the extent to which they were realized, are discussed later. Subsamples were counted in a chamber of original design which combines the features of Gannon's chambered cell (Gannon, 1971) and Ward's plankton wheel (Ward, 1955). Stereozoom microscopes capable of magnifications up to 210 X were used; these combined with the open top feature of the chamber (permitting manipulation of specimens into favorable viewing positions) made it possible to identify species of microcrustacea without dissection.

Total zooplankton weights were determined from the counted splits．In some cases，the samples contained so much algae that realistic＂zooplankton＂weights could not be determined．These samples were not weighed．The balance of the samples yielded what we consider to be crude but reliable estimates of the zoo－ plankton biomass．Although our $⿰ ⿰ 三 丨 ⿰ 丨 三 一 10$ net probably underestimated the numbers of very small forms（rotifers，small nauplii），this error may have been partly off－ set by the inclusion of some net phytoplankton．We weighed zooplankton on No． 1 Whatman filter papers， 5 cm in diameter，using a Mettler $H 54$ electrobalance（least division $=0.1 \mathrm{mg}$ ；estimates to 0.01 mg ）．Before weighing，the filters were dried in an oven at ca．100C for at least．four hours．Several procedures were tried to minimize errors due to absorption of moisture by the filters，and the following treatment proved to be simple and precise．Filters were taken from the oven and placed on the balance．The weight was recorded one minute after removal from the oven．Re－weighings of filters after mock treatments（filtering 100 ml tap water and then re－drying）provided an estimate of the precision of this meth－ od．Ten filters showed a weight change ranging from -0.06 mg to +0.25 mg （mean： ＋0．06；s．d．：0．1）．The zooplankton samples usually weighed between 2 and 16 mg ， so that at the most，these errors ammounted to between 1 and 12% of the sample weight；other sources of error in the methods are greater than this．However，a couple of zooplankton samples weighed only ca． 0.5 mg ，so in these cases the weighing error could at worst approach half of the sample weight．

It is appropriate to include a few remarks on the statistical problems of zooplankton sampling and enumeration．Workers who have taken repeated zooplank－ ton samples from the same station have found that the coefficient of variation （the standard deviation expressed as a percentage of the mean）is around 25% （Nauwerck，1963）or more，sometimes considerably more．It is therefore of in－ terest to consider how to divide the available effort between the extremes of
taking many small samples or a few large ones. The choice is made a little easier by the problems of enumeration in the laboratory. Even a relatively small sample (say, 10 liters) may contain far too many individuals ($1,000-2,000$) to count them all; so the field sample must be quantitatively subsampled. In theory, the subsample is considerably less variable than the ileld sample. It is therefore reasonable strategy to take large samples which integrate over sizeable areas of vertical and/or horizontal patchiness, and subsample these for counting. Another consideration is how large a subsample to count. Here it depends partly upon the questions being asked. If only quantitative information is sought, about 50 individuals may suffice (Ricker, 1938; Cassie, 1971). However, in many studies -- including this one -- it is of perhaps equal interest to get qualitative data on the occurrence of rare species, in order to document the early appearance or disappearance of diagnostic or noxious species. Counting only 50 individuals wiil not reveal the rare species. We adopted the strategy to take large field samples (several cubic meters) and enumerate rathcr large subsamples from them. For this purpose we designed a new counting chamber which accepts a subsample of around 10 ml . For the 1972 data we enumerated duplicate subsamples in order to test whether our subsampling scheme was effective. Some species are too rare to get meaningful quantitative information about them; our data show that if an animal comprises less than 5% of the total, our counts must be considered qualitative only, even though the total number of animals enumerated approaches 1,000. Figure 8 illustrates this; the coefficients of variation between duplicate subsamples (species counts) are plotted against the relative abundance of the species, for all species which accounted for more than 5% of the fauna. The line encloses 95% of the points, and it is apparent that if an organism comprises 15% or more of the total fauna, the coefficient of variation will be 15% or less. The coefficient of variation decreases with increasing commonness of the species;

Figure 8. The coefficient of variation (\%) between duplicate zooplankton subsamples plotted against the relative abundance (\% of total zooplankton assemblage) for 110 species counts which amounted to over 5% of the total zooplankton assemblage. The line is drawn by eye to enclose 95% of the points.
animals that make up 45% or more of the assemblage -- dominant species - are counted to within $5-10 \%$. These figures are encouraging, since they are less than the expected field sampling error. It is worth considering, for subsequent surveys, to replicate samples in the field, and count only one subsample from each tow. However, the genus counts show considerably more variability between subsamples, approaching the variability expected between replicated samples. This problem must be worked out before councing duplicate subsamples is abandoned. The genus counts were made by a different enumerator than the species counts. Some sources of error may be counting too small subsamplss, and/or insufficient care taken with the splitter. Longhurst and Seibert (1967) have shown that the Folsom splitter gives its most satisfactory results when the operator is skilled.

Qualitative Results

The 21 zooplankton Crustacea species which made up the 1972 fauna in the study area are shown in Table 18 , along with the maximum percentage of the total fauna that each attained during the study period. Three cyclopoid copepods were found; only one (oyclops bicuspidatus thomasi) can be considered among the dominants. Oyclops vermalis never exceeded 1% of the total, and Tropogelope prasinue mexicanus never more than 3%.

Calanoid copepods comprised 7 species, four of them in the genus Diaptorus. Diaptomus ashzandi was the most common of the Diaptomus species, and was a major offshore species in spring. Diaptomus minutus at times made up 12% of the assemblage, but the other two diaptomids (D. oregonensis and D. sicilis) were less common. Three other calanoids, Eurytemora affinis, Epischura Zacustris, and Limnocalanus macrumus, were never common; the former is an introduced brackish water species, and the latter is a glacial relic.

Table 18. The 1972 zooplankton Crustacea (16 Genera, 21 Species)

Max. \% of fauna attained in 1972 collections

```
Cyclopoid copepods (2 genera, 3 species)
```

Cyclops bicuspidatus thomasi S. A. Forbes 42
Cyclops vernalis Fischer <1
Tropocyclops prasinus mexicanus Kiefer 3

Calanoid copepods (4 genera, 7 species)
Diaptomus ashZandi Marsh 43
Diaptomus minutus Lilljeborg 12
Diaptomus oregonensis Lilljeborg 9
Diaptomus sicilis S. A. Forbes 2
Epischura lacustris S. A. Forbes 1
Eurytemora affinis (Poppe) <1
Limnocalanus macrurus Sars 1

Harpacticoid copepods (1 genus, 1 species)
Canthocamptus sp. 1

Cladocerans (9 genera, 10 species)
Bosmina Zongirostris (0. F. Müller) 85
Ceriodaphnia quadrangula (0. F. Müller) <1
Chydorus sphaericus (O. F. Müller) <1
Daphnia galeata mendotae Birge 6
Daphnia retrocurva S. A. Forbes 16
Diaphanosoma leuchtenbergianum Fischer 1
Eubosmina coregoni (Baird) 12
Holopedium gibberum Zaddach 7
Leptodora kindtii (Focke) <1
Polyphemus pediculus (Linné) 1

One harpacticoid copepod, Canthocamptus sp. (perhaps C. robertcokeri M. S. Wilson, but this must be verified) occurred sporadically.

The cladoceran fauna was rich, especially in summer. Bosmina longirostris was the most common cladoceran and the most common zooplankter in summer, making up as much as 85% of the fauna. Another bosminid, Eubosmina coregoni was less common, but sometimes made up over 10% of the total. Daphnia retrocurva was the only other cladoceran common enough to account for over 10%. The other 7 cladocerans were Daphnia galeata mendotae, Holopedium gibberum, Polypherns pediculus, Diaphanosoma pediculus, Diaphanosoma leuchtenbergianum, Ceriodaphnia quadrangula, Chydorus sphaericus, and Leptodora kindtii, in order of decreasing abundance.

Several genera of rotifers were found in summer. However, oniy one species (Asplanchna sp., probably Asplanchna priodonta Gosse) was enumerated. The others are too small to be collected by our nets, and require special handing to identify.

Several other species were found only occasionally, and are listed in Table 19. Usually a single individual was found in a collection; the number of occurrences of each species is listed. Three rare cyclopoids were noted. Two are littoral-benthic forms (Eucyclops agilis and Paracyclops fimbriatis poppi) and may be expected to occur accidentally in nearshore collections. The third species, Mesocyclops edax, is a large cyclopoid which was once much more common in lake Michigan. Its decline was attributed by Wells (1970) to size-selective alewife predation.

One calanoid species, Diaptomus reighardi, occurred only once; this record is very interesting because this species has not been reported from Lake Michigan before (Robertson, 1966); it is known from Lake Erie. Whether this specimen is an accidental individual washed out from an inland lake, or whether a breeding population is developing in Lake Michigan, will be watched with great

Table 19. Rare zooplankton species, 1972. Occurrences at our 30 species and 110 genera stations.
Occurences at:
Species Genera
Stas. Stas.
Cyclopoid copepods
Eucyclops agilis (Koch) 1
Mesocyclops edax (S. A. Forbes) 1
Paracyclops fimbriatus poppei (Rehberg)
Calanoid copepods
Diaptomus reighardi Marsh 1
Cladocerans
Alona spp. 4
Alonella sp. 1
Daphnia Zongiremus Sars 4Eurycercus Zamellatus (0. F. Müller)
Ilyocryptus sordidus (Liéven) 1
Leydigia quadrangulamis (Leydig) 1
Macrothrix Zaticornis (Jurine) 1
Acarina

Acarina
Amphipoda

Amphipoda
Pontoporeia affinis Lindstrom 2

Pontoporeia affinis Lindstrom

Mysidacea
Mysis relicta Lovén

1
interest in subsequent surveys. Another calanoid, Senecella calancides juday, is known from Lake Michigan, but did not occur in our samples. It is a deep-water species and not common now (Gannon, 1972).

Seven species of macrothricid and chydorid Cladocera were found, all of which are littoral-benthic in habitat, and are onty ccastonally a part of the true plankton. One species, Daphnia longiremus, is a true plankter associated with cold, deep waters in Lake Michigan. We noted it in mail numbers only four times. (Entrainment studies we conducted in February 197 suggest that this species may be relatively more common in cur zone in witer, aithough it is not numerous then.)

The occurrence of Pontoporeia and Mysis in a fer sampies ts noteworthy; these benthic Crustacea occasionally wander some distance abcye the sedimets.

The dominant species then, were Cyolops Dicuspiatue thomas\%, Diaptomus ash... landi, D. minutus, Bosmira Logirostris, Dapmia reirwam, and Eubosmimi comooni. It may be said that the qualitative composition of the 137) Lake Michigan fava in our area was comparable to that reported in other recent studies (Gannon, 1972; Wells, 1970). The astonishing quantitative developmert of Boentina borgirostris is discussed in the following section.

Quantitative Results

The primary data are given in Tables 20 through 27 (species counts) and 28 through 35 (generic counts); included for each station are the mean number of each taxon (individuals $/ \mathrm{m}^{3}$), the coefficient of variation (i.e., the standard deviation expressed as a percentage of the mean) between duplicate subsamples, the percent composition of the fauna, the dry weight (milligrams $/ \mathrm{m}^{3}$), and the mean zooplankter weight (micrograms/individual). In the pages that follow, the 1972 data are presented in a fairly detailed though non-rigorous way. In subsequent

$$
\begin{aligned}
& \text { Species } \\
& \text { Copepod nauplii } \\
& \text { Cyclopoid copepods } \\
& \text { Immature copepodids } \\
& \text { Cyclops bicuspidatus thomasi } \\
& \text { Cyclops vernalis } \\
& \text { Tropocyclops prasinus mexicanus } \\
& \text { Calanoid copepods } \\
& \text { Immature copepodids } \\
& \text { Diaptomus ashlandi } \\
& \text { Diaptomus minutus } \\
& \text { Diaptomus oregonensis } \\
& \text { Diaptomus sicilis } \\
& \text { Epischura lacustris } \\
& \text { Eurytemora affinis } \\
& \text { Limnocalanus macrurus } \\
& \text { Harpacticoid copepods } \\
& \text { Canthocamptus sp. } \\
& \text { Cladocerans } \\
& \text { Bosmina longirostris } \\
& \text { Ceriodaphnia quadrangula } \\
& \text { Chydorus sphaericus } \\
& \text { Daphnia galeata mendotae } \\
& \text { Daphnia retrocurva } \\
& \text { Diaphanosoma leuchtenbergianum } \\
& \text { Eubosmina coregoni } \\
& \text { Holopedium gibberum } \\
& \text { Leptodora kindtii } \\
& \text { Polyphemus pediculus } \\
& \text { Rotifers } \\
& \text { Asplanchna sp. }
\end{aligned}
$$

Asplanchna sp.
TOTAL
TOTAL
$\mathrm{mg} / \mathrm{m}^{3}$
$\mu \mathrm{g} /$ individual
Table 21. Zooplankton species conts find/a, coefficisnt of variation between duplicate subsamples, percent composition by species, cotal zoo lankion wetgit ($\mathrm{mg} / \mathrm{m}^{3}$: and mean zooplankter weight ($\mu \mathrm{g} / \mathrm{ind}$) for 3 stations

$$
-\frac{\%}{41.5}
$$

$$
\frac{\mathrm{pc}}{\frac{\# / m^{3}}{528} \cdot \frac{\%}{12} \frac{\%}{9.5}}
$$

$$
\frac{D C-2}{\frac{1}{3 / m^{3}} \frac{c v}{2} \frac{\%}{77.2}} \begin{array}{r}
267 \\
24 \\
25 \\
2.32
\end{array}
$$

$$
+\infty
$$

$$
\begin{aligned}
& \text { Species } \\
& \text { Copepod nauplii } \\
& \text { Cyclopoid copepods } \\
& \text { Immature copepodids } \\
& \text { Cyclops bicuspidatus thomasi } \\
& \text { Cyclops vermalis } \\
& \text { Tropocyclops prasinus mexicanus } \\
& \text { Calanoid copepods } \\
& \text { Immature copepodids } \\
& \text { Diaptomus ashlandi } \\
& \text { Diaptomus minutus } \\
& \text { Diaptomus oregonensis } \\
& \text { Diaptomus sicilis } \\
& \text { Epischura lacustris } \\
& \text { Eurytemora affinis } \\
& \text { Limnocalanus macrumu } \\
& \text { Harpacticoid copepods } \\
& \text { Canthocamptus sp. } \\
& \text { Cladocerans } \\
& \text { Bosmina Zongirostris } \\
& \text { Cemiodaphnia quadrongula } \\
& \text { Chydorus sphaericus } \\
& \text { Daphnia galeata mendotae } \\
& \text { Daphnia retrocurva } \\
& \text { Diaphanosoma leuchtenbergianum } \\
& \text { Eubosmina coregoni } \\
& \text { Holopedium gibberum } \\
& \text { Leptodora kindtii } \\
& \text { Polyphemus pedicrilus } \\
& \text { Rotifers } \\
& \text { Asplanchna sp. }
\end{aligned}
$$

TOTAL $\mathrm{mg} / \mathrm{m}^{3}$ $\mu \mathrm{~g} /$ individual TOTAL $\mathrm{mg} / \mathrm{m}^{3}$ $\mu \mathrm{~g} /$ individual TOTAL $\mathrm{mg} / \mathrm{m}^{3}$ $\mu \mathrm{~g} /$ individual

 sampled on 4 May 1972.Table 22. Zooplankton species counts (ind $/ \mathrm{m}^{3}$), coefficients of variation between duplicate subsamples, percent composition by species, total zooplankton weight ($\mathrm{mg} / \mathrm{m}^{3}$), and mean zooplankter weight ($\mu \mathrm{g} / \mathrm{ind}$) for 3 stations

Table 23. Zooplankton species counts (ind $/ \mathrm{m}^{3}$), coefficients of variation between duplicate subsamples, percent ($\mathrm{mg} / \mathrm{m}^{3}$), and mean zooplankter weight ($\mu \mathrm{g} / \mathrm{ind}$) for 5 stations
SDC-7-1

 sampled on 16 July 1972. \qquad
Copepod nauplii
Cyclopoid copepods
Immature copepodids
Cyclops bicuspidatus
Cyclops bicuspidatus thomasi
Cyclops vernalis
Tropocyclops prasinus mexicanus
Calanoid copepods
Immature copepodids
Cyclops bicuspidatus thomasi
Cyclops vernalis
Tropocyclops prasinus mexicanus
Calanoid copepods
Immature copepodids
Cyclops bicuspidatus thomasi
Cyclops vernalis
Tropocyclops prasinus mexicanus
Calanoid copepods
Immature copepodids
Immature copepodids
Diaptomus ashlandi Diaptomus minutus
Diaptomus oregonensis Diaptomus oregonensis
Diaptomus sicilis
Epischura lacustris
Eury temora affinis
Limnocalarius macrumus Harpacticoid copepods Canthocamptus sp.
Cladocerans
Bosmina Zongirostris

> Daphnia retrocurva Diaphanosoma leuchtenbergianior Eubosmina coregoni Holopedium gibberom Leptodora kindtii Polyphemus pediculus Rotifers Asplanchna sp.
TOTAL
ug/individual
Table 24. Zooplankton species counts (ind/m), coefficients of variation between duplicate subsamples, percent composition by species, total zooplankton weight ($\mathrm{mg} / \mathrm{m}^{3}$), and mean zooplankter weight ($\mu \mathrm{g} / \mathrm{ind}$) for 3 stations

Copepod nauplii Cyclopoid copepods Immature copepodids
Cyclops bicuspidatus thomasi
Cyclops vernalis
Tropocyclops prasinus mexicanus
Calanoid copepods
Immature copepodids Immature copepodids
Diaptomus ashlandi Diaptomus minutus Diaptomus oregonensis Diaptomus oregonensis
Diaptomus sicilis Epischura lacustris Eurytemora affinis Limnocalanus macrumus Harpacticoid copepods Canthocarptus sp.
Cladocerans
Bosmina Zongirostris
Ceriodaphnia quadrangula Ceriodaphnia quadrangula
Chydorus sphaemicus Daphnia galeata mendotae Daphnia retrocurva
Diaphanosoma leuchtenbergianum Eubosmina coregoni Holopedium gibberum Leptodora kindtir Polyphemus pediculus
Rotifers
Asplanchna sp.
TOTAL
$\mu \mathrm{g} /$ individual
Table 25．Zooplankton species counts＇fnd／m），coefficionts of variation between duplicate subsamples，percent composition by species，total zoorlankton weight（ $\mathrm{mg} / \mathrm{m}^{3}$ ），and mean zooplankter weight（ $\mu \mathrm{g} / \mathrm{ind}$ ）for 3 stations

	$\infty \wedge \sim \wedge \infty$	σ	
$\stackrel{\square}{\circ}$	riririo oso	N	
$\stackrel{\sim}{n}$		\cdots	\cdots
$\stackrel{\circ}{\sim}$	$\underset{\sim}{\circ}$	$\stackrel{\text { ñ }}{\substack{\text { a }}}$	べべへ
${ }^{\infty}$	のngomin	${ }^{*}$	Nro
\cdots	0 m	－	
m	Nraonty	\bigcirc	
$\stackrel{\circ}{*}$	$\dot{n} \dot{0} \dot{\circ} \dot{\cos }$	0	
N		\cdots	$\stackrel{\sim}{N}$
\sim	N上NNOM	$\hat{}$	Noro
$\stackrel{O}{7}$	R－${ }^{\infty}$ N ${ }^{\text {N }}$	ñ	－＊＊＊
－i	$\cdots \times \infty$		$i i^{\alpha \sigma}$
\bigcirc	ナ゙サOQ世0	0	
0	+0. icioc	0	
号	$\sin \operatorname{rim}_{\infty}^{\infty} \underset{-1}{\infty}$	－	$0 \sim$
	＋omNoon	\cdots	∞^{∞}
N		∞	\hat{O}
	ベぎ - －i		

Copepod nauplii
Cyclopoid copepods
Immature copepodids
Cyclops bicuspidatus thomasi
Cyclops vemalis
Tropocyclops prasinus mexicanus
Calanoid copepods
Immature copepodids
Diaptomus ashlandi
Diaptomus minutus
Diaptomus oregonensis
Diaptomus sicilis
Epischura Zacustris
Eumytemora affinis
Limnocalanus macrumus Harpacticoid copepods Canthocamptus sp．
Cladocerans
Bosmina longirostris Ceriodaphnia quadrongula
Chydorus sphaerious
Daphnia galeata mendotae
Diaphanosoma leuchtenbergixnum
Eubosmina coregoni
Holopedium gibberum
Polyphernus pediculus
Aspianchna sp．

TOTAL

$\mu g / i n d i v i d u a l$
Table 26. Zooplankton species counts (ind/m), coeffiçients of variation between duplicate subsamples, percent composition by species, total zooplankton weight (mg / m), and mean zooplankter weight ($\mu \mathrm{g} / \mathrm{ind}$) for 5 stations

DC-6			DC-5			DC-2			NDC-7-1			SDC-7-1		
\#/ $/ \mathrm{m}^{3}$	cv	\%	\#/ $/ \mathrm{m}^{3}$	cv	\%	\#/ m^{3}	cv	\%	\#/ $/ \mathrm{m}^{3}$	cv	\%	\#/m ${ }^{3}$	cv	\%
2,452	8	6.2	2,107	3	3.8	4,370	8	5.4	2,676	5	6.4	1,914	16	1.9
11,819	8	30.0	12,221	11	22.1	8,981	5	11.1	5,745	2	13.8	6,118	17	6.2
2,550	5	6.5	2,335	1	4.2	1,239	12	1.5	449	12	1.1	439	20	0.4
			53	142	0.1	34	145	0.0	19	141	0.0			
1,103	3	2.8	1,229	8	2.2	1,067	5	1.3	487	22	1.2	3,075	23	3.1
17,508	13	44.4	24,441	3	44.1	14,692	8	18.2	4,136	4	10.0	2,165	23	2.2
454	11	1.2	509	6	0.9	129	28	0.2				31	141	0.0
98	35	0.2	88	30	0.2	189	0	0.2	9	147	0.0	157	85	0.2
221	32	0.6	316	16	0.6	155	31	0.2	65	21	0.2	94	47	0.1
37	144	0.1	211	47	0.4	17	0	0.0						
						86	85	0.1	9	147	0.0			

 Species
Copepod nauplii
Cyclopoid copepods
Immature copepodids
Cyclops bicuspidatus thomasi
Cyclops vernalis
Tropocyclops prasinus mexicanus
Calanoid copepods
Immature copepodids
Diaptomus ashlandi
Diaptomus minutus
Diaptomus oregonensis
Diaptomus sicilis
Epischura Zacustris
Eurytemora affinis
Limocalanus macrurus Harpacticoid copepods Canthocamptus sp.
Cladocerans
Bosmina Zongirostris Ceriodaphnia quadrangula
Chydorus sphaericus

$$
\begin{aligned}
& \text { Daphnia retrocurva } \\
& \text { Diaphanosoma leuchtenbergianum } \\
& \text { Eubosmina coregoni } \\
& \text { Holopedium gibberum } \\
& \text { Leptodora kindtii } \\
& \text { Polyphemus pediculus } \\
& \text { Rotifers } \\
& \text { Asplanchna sp. }
\end{aligned}
$$

TOTAL
$\mu \mathrm{g} /$ individual
Table 27. Zooplankton species counts (ind $/ \mathrm{m}^{3}$), coefficients of variation between duplicate subsamples, percent composition by species, total zoollankton weight ($\mathrm{mg} / \mathrm{m}^{3}$), and mean zooplankter weight ($\mu \mathrm{g} / \mathrm{ind}$) for 3 stations sampled on 3 November 1972.

TOTAL
$\mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{Hg} / \mathrm{In}$
Table 28. Zooplankton genus counts (ind $/ \mathrm{m}^{3}$), coefficients of variation between duplicate subsamples, percent composition by genus, total zooplankton weight ($\mathrm{mg} / \mathrm{m}^{3}$), and mean zooplankter weight ($\mu \mathrm{g} / \mathrm{ind}$) for 41 stations sampled on 12 April 1972.

DC-4			DC-3			DC-1			NDC-. 25-1			SDC-. 25-1		
\#/m3	CV	\%	\#/m3	CV	\%	非/m3	CV	\%	\#/m3	CV	\%	\#/m3	CV	\%
1,825		30.7	1,154		20.3	506		32.4	1,466		19.3	1,082		16.3
639		10.7	405		7.1	166		10.6	425		5.6	565		8.5
1,591		26.7	2,788		49.0	432		27.7	4,388		57.6	3,369		50.9
17		0.3	54		0.9				52		0.7			
63		1.1	27		0.5	28		1.8	17		0.2	90		1.4
1,774		29.8	1,181		20.8	377		24.2	1,231		16.2	1,437		21.7
34		0.6	20		0.4	5		0.3				47		0.7
6		0.1	34		0.6				26		0.3			
			7		0.1									
												5		0.1
						37		2.4	9		0.1	18		0.3
			7		0.1									
			7		0.1							5		0.1
						5		0.2				2		0.0
5,949			5,684			1,561			7,614			6,621		

$$
5,949
$$

Genus
 Cyclops
Tropocyclops
Calanoid copep Calanoid copepods
Immature copepodids Diaptomus Epischura
Eury temora
Limnocalanus
 Canthocamptus Cladocerans
Bosmina
Ceriodaphnia Chydorus Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora Polyphemus
Rotifers
Asplanchna
TOTAL
$\underset{\text { 昌 }}{0}$
$\mu \mathrm{g} /$ individual

Table 28, cont'd.

TOTAL
ug/individual
Genus
Copepod nauplii
Cyclopoid copepods
Immature copepodids
Cyclops
Tropocyclops
Calanoid copepods
Immature copepodids
Diaptomus
Epischura
Eurytemora
Limnocalanus
Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna

Genus
Copepod nauplii
Cyclopoid copepods
Immature copepodids
Cyclops
Tropocyclops
Calanoid copepods
Immature copepodids Immature copepodids
Diaptomus
Epischura Epischura
Eury temora
 Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna TOTAL
$\mathrm{mg} / \mathrm{m}^{3}$
$\mu \mathrm{~g} /$ individual
Table 28, cont'd.

2,320
1,461

9,048

Table 28, cont'd. Genus
Copepod nauplii
Cyclopoid copepods
Immature copepodids
Cyclops
Tropocyclops
Calanoid copepods
Immature copepodids
Diaptomus
Epischura
Eurytemora
Limnocalanus
Harpacticoid copepods
Canthoccomptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium
Leptodora
Polyphemus
Rotifers
Asplanchna
TOTAL
mg/m
ug/individual

Table 28, cont'd.

$$
4,453
$$

$$
\begin{aligned}
& \hat{0} \\
& \underset{N}{n}
\end{aligned}
$$

$$
638
$$

$$
3,218
$$

TOTAL
TOTAL
$\mathrm{mg} / \mathrm{m}^{3}$
$\mu \mathrm{~g} / \mathrm{in}$
$\mu \mathrm{g} /$ individual

Table 29．Zooplankton genus counts（ind／m ），coefficients of variation between duplicate subsamples，percent composition by genus，total zooplankton weight（ $\mathrm{mg} / \mathrm{m}^{3}$ ），and mean cooplankter weight（ $\mu \mathrm{g} / \mathrm{ind}$ ）for 5 stations
sampled on 4 May 1972 ．

Harpacticoid copepods Canthocamptus Cladocerans

0
0
0
0
0
0
0
0
0
0
0
Chydorus
Daphnia
Diaphanosoma
Eubosmina
Holopedium Leptodora Polyphemus
Rotifers

Asplanchna in

$\begin{array}{ll}0 & 0 \\ \sim & 0 \\ - & 0 \\ -1 & \infty\end{array}$

$$
\begin{array}{r}
9 \quad 50 \quad 0.1 \\
6,312
\end{array}
$$

$6151 \quad 0.2$
$\begin{array}{ccc}41 & 0 & 0.6 \\ 27 & 47 & 0.4 \\ 23 & 76 & 0.4 \\ 13 & 25 & 0.2\end{array}$
$50 \quad 0.1$

$\mathrm{DC}-1$		
2,649	8	83.4
142	24	4.5
163	8	5.1
50	42	1.6
119	14	3.7

$$
\begin{array}{rrr}
36 & 0 & 1.1 \\
6 & 151 & 0.2 \\
6 & 151 & 0.2
\end{array}
$$

$$
\begin{aligned}
& 0.31 \\
& 3,177
\end{aligned}
$$

Genus	DC-4			DC-3			DC-1			NDC-. 5-2			SDC-. 5-2		
	\#1/m ${ }^{3}$	cy	\%	\#/ m^{3}	cv	\%	di/m ${ }^{3}$	cv		\#/m ${ }^{3}$	cv	\%	\#/ $/ \mathrm{m}^{3}$	cv	\%
Copepod nauplii Cyclopoid copepods	$\begin{array}{lllllllllllllllllll}\text { Cyclopoid copepods } & , 2,379 & 15 & 5.5 & 5,096 & 23 & 9.7 & 11,87\end{array}$														
Immature copepodids	6,836	34	5.2	2,147	31										
Cyclops	43,138	2	32.6	3,291	24	2.9	751	20	1.7	593	0	1.1	5,379	10	7.0
Tropocyclops	94	141	0.1	-28	142	0.0	105	47	1.3	1,007	141		834	47	1.1
Immature copepodids	7,025	76	5.3	7,529	28	9.4	2,312	0	5.5	3,911	25				
Diaptomus	8,439	34	6.4	948	124	2.2	-84	71	0. 2	3,911	25	0.5	6,956 92	13 146	9.0
Epischura Eury temora Limnocalanus	71		0.1	167	47	0.2	7		0.0		0		92 278	146	0.1 0.4
Harpacticoid copepods Canthocamptus															
Cladocerans															
Bosmina	57,187	5	43.3	48,634	34	60.8	33,775	1	78.5	35,437	16	67.	47.118	20	60.9
Ceriodaphnia							18	31	0.0						
Chydorus	24	142	0.0	84	141	0.1	25	09	0.1						
Daphnia	1,060	22	0.8	892	53	1.1	137	19	0.3						
Diaphanosoma		142	0.0				11	30	0.0	119	14,	$0 . ?$			
Eubosmina			0.0												
Holopedium							11	30	0.0						
Leptodora		142	0.0				11	140	0.0						
Polyphemus	519	77	0.4	390	t. 2	0.3	400	3	0.9	1,303	43	2.6			
Rotifers															
Asplanchna	1,532	76	1.?	3,983	11	5.0	2,351	23	5.5	4,326	1	8.2	4,822	16	6.2
TOTAL	132,220			30.034			43,006			52,444					
$\mathrm{mg} / \mathrm{m}^{3}$		15		152	3		108	13		185	2		, 497	1.	
\%g/individual	2.1	7		3.8	9		2.5	8		3.6	2		6.3	18	

Table 31, cont'd.

TGSE $\angle 8 T^{*} T E$ Diaptomus

Table 31, cont'd.

Harpacticoid copepods
Canthocamptus
Cladocerans
Eurytemora
Limnocalanus
Harpacticoid co

Bosmina
Ceriodaphnia
Chydorus
Diaphanosoma
Eubosmina
Holopedium
Leptodora Polyphemus
Rotifers

Asplanchna

TOTAL

Table 33. Zooplankton genus counis (ind $/ \mathrm{m}^{3}$), coefficients of variation between duplicate subsamples, percent sampled on 8 September 1972.

M -ionviniono

$\underset{\sim}{\text { Y }} \quad \infty \quad \infty \quad \dot{\sim}$
Table 34 cont'd.

NDC-4-4		
\#/ m^{3}	CV	\%
925	26	2.4
4,351	21	11.3
6,957	9	18.1
336	35	0.9
21,081	4	54.9
357	8	0.9

m	H-rNon	N	
0	ONOH0	\cdots	
$\underset{-}{-7}$	$\underset{\sim}{-7} \underset{\sim}{N}$	-1/	00
$\stackrel{\sim}{0}$		-	

 $\underset{\sim}{\infty}$
$\stackrel{\sim}{\infty}$
$\underset{\sim}{\infty}$

NDC-4-3			NDC-4-1			NDC-7-5			NDC-7-3		
\#/m ${ }^{3}$	cv	\%	\#/m3	cv	\%	\#/m ${ }^{3}$	cv	$\%$	\#/m ${ }^{3}$	cV	$\%$
1,210	28	1.9	1,333	36	4.8	1,017	40	1.8	1,586	32	9.3
8,648	2	13.8	1,219	9	4.4	5,683	56	9.9	3,538	13	20.6
4,152	21	6.6	419	64	1.5	9,441	20	16.4	1,222	5	7.1
162	141	0.3	76	0	0.3	436	24	0.8	- 84	10	0.5
33,371	2	53.4	686	16	2.5	35,295	13	61.5	5,819	13	33.9
219	117	0.4				345	82	0.6	189	51	1.1
162	91	0.3							122	16	0.7
29	142	0.0							40	0	0.2
2,533	22	4.1	21,257	41	77.1	272	4	0.5	1,924	20	11.2
						18	143	0.0			
29	48	0.0				54	47	0.1	203	57	1.2
8,000	12	12.8	343	16	1.2	1,961	34	3.4	1,242	5	7.2
410	36	0.7	76	0	0.3	254	0	0.4	176	0	1.0
2,210	5	3.5	2,133	51	7.7	1,416	15	2.5	709		4.1
943	27	1.5	38	141	0.1	54	47	0.1	169	23	1.0
29	48	0.0				18	143	0.0	61	15	0.4
362	45	0.6				1,162	49	2.0	51	47	0:3
62,467			27,581			57,427			17,141		
-			195	4		156	15		-		
-			7.2	35		2.5			-		

Table 34 cont'd.

Harpacticoid copepods
Canthocamptus
Cladocerans
Bosmina
Ceriodaphnia
Chydorus
Daphnia
Diaphanosoma水 §
J
on
0
0
0
0
운 Leptodora
Polyphemus Rotifers Asplanchna
TOTAL
$\mu \mathrm{g} /$ individual

surveys，the zooplankton data（including the 1972 data）will be placed on compu－ ter cards，and machine processing will permit more rigorous comparisons with pre－ vious surveys．This has not yet been done for the 1972 data for two reasons： 1）time did not permit it，since the data were not in hand until shortly before this report was issued；and 2）machine－processing now would be of limited useful－ ness anyway，since these data are the first complete set to be analyzed．The 1971 data are now being enumerated as time permits（a few of these are presented below，and will be included in the next annual report．Similarly，the 1970 da－ ta，some of which have been presented in earlier survey reports，are being evalu－ ated to determine their comparability with those collected by later methods（in 1970，a $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 5 mesh plankton net was used）；again，some of these data are presented below．

The Seasonal Succession of Species on the DC－transect

As an introduction to the seasonal dynamics of the zooplankton Crustacea in the study area，it is convenient to consider three stations on the DC－line（DC－ 2，$D C-5, D C-6)$ in some detail．These stations were selected beause they are lo－ cated near the plant，species counts were available for all dates，biomass infor－ mation exists for nearly all dates，and the inshore－offshore spectrum is represen－ ted．Their depths and distances from shore are shown below：

| Station | Depth，ft． | Distance from shore，miles | Zone |
| :--- | :---: | :---: | :---: | :---: |
| | 42 | $3 / 4$ | ＂inshore＂ |
| DC－5 | 84 | 4 | ＂middle＂ |
| DC－6 | 140 | 7 | ＂offshore＂ |

It will be shown that conditions at the inshore station（DC－2）are representative of the zone from which the plant intake water will be drawn．

Let us begin by considering the total zooplankton numbers at these reference stations (Figure 9). The differences between the three zones were unimportant on the first three dates; all had 4,000-8,000 individuals/m ${ }^{3}$ in April and May, and all had increased by about a factor of 4 (i.e., to $24,000-32,000 / \mathrm{m}^{3}$) by June. Maximum zooplankton abundance at the middle and offshore stations (ca. $130,000 / \mathrm{m}^{3}$) occurred in July. However, the inshore seasonal maximum of $280,000 / \mathrm{m}^{3}$ did not occur until August, by which time abundances at the offshore and middle stations had declined slightly, to ca. $80,000-90,000 / \mathrm{m}^{3}$. All three stations had ca. $50,000 / \mathrm{m}^{3}$ in September. In October, a second, but smaller $\left(80,000 / \mathrm{m}^{3}\right)$ pulse occurred inshore, but not at the other two stations. All thret had about $30,000 / \mathrm{m}^{3}$ in November. Thus the 1972 pattern may be summarized as follows: A11 three zones showed a similar increase from a spring minimum to a July maximum. Thereafter, the offshore and midde stations declined gradually to an autumn minimum, but the inshore station experienced a very large pulse in August, and a second but lesser one in October. The tota? numbers found in 1972 were very high; in fact, they may be the highest ever reported from Lake Michigan. Gannon (1972) studied the zooplankton Crustacea of Lake Michigan, Green Bay, and Milwaukee liarbor in 1969 and 1970, and never found over $100,000 / n^{2}$ in the open lake. However, he reported a September 1969 maximum of $120,000 / \mathrm{m}^{3}$ in Milwaukee Harbor, and a July 1970 naximum of $230,000 / \mathrm{m}^{3}$ in southern Green Bay. It seems likely that 1972 was an unusual year, perhaps because of generally cooler water temperatures. Data available from 1970 and 1971 near the Cook Plant (to be presented later) showed smaller plankton densities than those found in 1972.

The zooplankton biomass per unit volume data (Figure 10) show a seasonal pattern similar to the numerical abundances, with the annual maximum in July at the offshore and middle stations, but not until August at the inshore station. However, the relative height of the peak suggests that there is a diminution of

Figure 10.
average zooplankton weight as one moves shoreward, and proceeds seasonally. This trend is shown more clearly in Figure 11. The mean dry weight per individual zooplankter was highest (ca. $10 \mu \mathrm{~g}$) offshore in spring. Offshore zooplankton weights decreased rapidly until July, and gradually thereafter, to a minimum of ca. $2 \mu \mathrm{~g}$ in October and November. The middle and inshore stations had smaller animals in June, and their weight further decreased to an August minimum (of ca. $1 \mu \mathrm{~g} /$ individual); thereafter there was a gradual increase so that by November the largest animals were found inshore ($4 \mu \mathrm{~g} /$ individual), and the smallest were offshore. The explanation for this will be evident in the following paragraphs in which the seasonal dynamics of the individual species are considered, but may be summarized as follows. The offshore populations are dominated by copepods in spring; the increasing abundance of smaller Cladocera (chiefly Bosmina Zongirostmis) reduces the average size as summer proceeds. At the middle and inshore stations, the smaller cladocerans appear earlier and dominate more completely by August. Thereafter, larger Cladocera like Daphnia galeata mendotae, Daphnia retrocurva, Diaphanosoma leuchtenbergianum, and Holopedium gibberum -- summer and fall species which are most abundant near shore -- cause an increase in mean zooplankter size.

Let us now consider the seasonal changes in abundance of the individual species at the three reference stations. This information is summarized in Figure 12, where species abundances are represented graphically in 13 abundance ranges. Note that each larger circle represents about twice as many animals as the next smaller-sized circle. The general overview of the information in Figure 12 shows that most copepods are perennial offshore but reduced in numbers inshore in summer, and that most cladocerans are rare in spring, appear first inshore, and reach their abundance maxima in summer and fall.

Immature copepods (nauplii, cyclopoid copepodids, and calanoid copepodids) were fairly perennial at all three stations, with annual minima in April and May.

Figure 11. Zooplankton dr: weight (micrograng per individurl) at 3 stations on 8 dates in 1972.

Canthocamplus sp.

Chydorus sphoericus
Dophnia galeota mendotae
Daphia retrocurva
Diaphanosoma leuchtenbergianum
Eubosmina coregoni
Holopedium gibberum
Polyphemus pediculus
Asplanchna sp.
Figure 12. Zooplankton species abundances at 3 stations on 8 dates in 1972. Numbers per m^{3} are expressed in 13 abundance ranges. Each larger circle represents approximately twice as many individuals as the next smaller

The adults of the three dominant copepod species (Cyclops bicuspidatus thomasi, Diaptomus ashZandi, and Diaptomus minutus), were fairly abundant offshore at all seasons, but were definitely reduced in abundance inshore in summer. Diaptomus ashlandi is the first offshore dominant in spring. Cyclops bicuspidatus thomasi was most abundant inshore in April, but moved offshore as the season progressed. Cyclops vernalis was a rare summer species which seldon occurred inshore. Tropocyclops prasinus mexicanus, the smallest cyclopoid copepod, also a relatively rare species, was most abundant from July to November; unlike the dominant copepod species, Tropocyclops was about equally abundant at the inshore, midde, and offshore stations.

Diaptorus oregonensis, a fairly uncommon species, was present offshore in every month except June. It was rare or absent inshore in summer, and reached its seasonal maximum ($1,000-2,000$ individuals $/ \mathrm{m}^{3}$) in all 3 zones in November. Liaptomus sicilis was rarer still, and was most abundant ($100-200 / \mathrm{m}^{3}$) in April, May, and November. Epishura lacustris was a late summer-fall species in all three zones. Its maximum abundance was $312 / \mathrm{m}^{3}$. Limnocalanus macrurus, the largest copepod, was present at the inshore station only in April. It occurred occasionally at the middle and offshore stations from April to July. Limnocalanus is known to prefer cold water, and probably would have been more abundant if tows were made in deeper water in summer.

The only harpacticoid copepod we found, Canthocomptus sp., appeared in spring and fall at the inshore and middle stations, but in June was most abundant offshore $\left(267 / \mathrm{m}^{3}\right)$. Its populations are probably derived from the littoral-benthic habitat, as are those of several of the cladoceran species.

Except for a few Bosmina longirostris, no Cladocera were found offshore in spring. The enormous develpment of the Bosmina population in June, July, and August has already been mentioned. Bosmina was very abundant then at all three sta-
tions, but the inshore maximum $\left(178,000 / \mathrm{m}^{3}\right)$ was over three times as high as the maximum ever found at the middle or offshore stations (ca. $50,000 / \mathrm{m}^{3}$). Bosmina accounted for $30-40 \%$ of the total zooplankton assemblage at the offshore station in these months; at the middle station it accounted for from $33-56 \%$ of the total; and at the inshore station, it completely dominated the fauna, accounting for $63-72 \%$ of the animals found.

The other bosminid species, Eubosmina coregoni, was present in sizeable numbers only between August and November. Its maximum (ca. $9,000 / \mathrm{m}^{3}$) occurred inshore in October. Ceriodaphnia quadrangula was a summer species only rarely found offshore. At the inshore station in August it achieved its seasonal maximum of $579 / \mathrm{m}^{3}$. Chydomis sphaericus occurred sporadically at the inshore and middle stations, but was only found offshore once.

Daphnia galeata mendotae appeared inshore in May but reached its seasonal maximum ($3,000 / \mathrm{m}^{3}$) in October. It appeared later offshore and was never as abundant there. Daphnia retrocurva was also a summer and fall species most abundant inshore. It accounted for over 12,000 individuals $/ \mathrm{m}^{3}$ at the inshore station in August. Diaphanosoma leuchtenbergianum had a similar seasonal distribution, but was much more rare, never exceeding $700 / \mathrm{m}^{3}$.

Holopedium gibberum, also an inshore-summer species, only exceeded $3,000 / \mathrm{m}^{3}$ once, in September. Leptodora kindtii was very rare, but occurred most often inshore, and in late summer and fall. Polyphemus pediculus occurred on a few dates in summer; it was most abundant inshore, but never exceeded $400 / \mathrm{m}^{3}$.

The only rotifer we enumerated, Asplanchna sp., was present inshore during every month except November, and was usually present (although rarer) offshore as well. Its maximum abundance was $22,000 / \mathrm{m}^{3}$ at the inshore station in August.

Having considered the seasonal succession of species at these reference stations, it is appropriate to consider how consistently this pattern is repeated
in other parts of the sampling grid.

The Spatial Distribution of the Major Components of the Fauna on the Eight Survey Dates

1. The full survey of 12 April. The total zoorlankton numbers at each station are shown in Figure 13. Most of the stations with over $5,000 / \mathrm{m}^{3}$ were located between the 10 and 20 meter depth contours. A few stations (SDC-7-1, SDC-7-4, SDC-$2-2$, SDC-. $5-2, \mathrm{DC}-1, \mathrm{NDC}-1-2, \mathrm{NDC}-2-1,2 \mathrm{DC}-7-4$) had less than $2,000 / \mathrm{m}^{3}$. Most of thest were close to shore. The qualitative composition of the fama at these stations is sumarized in Figures 14 and 15. The offshore stations had over 40% adult Diantioma (mostly D. Githardi; ; a few stations close to shore (circled in Figure 10) also had over 40% Diaptomus. These stations were concentrated an two patches, one inciuding j stations on the $\mathrm{DC}, 1$ and SDC-2 lines, the other ancluding 4 stations between the NIC- . 5 and ND-4 Ines. Most stations had $20-30 \%$ Cyclozs (essentially all b buouseidatus thomaei). A few patches (circled in Figure 15) of uver 40% Chepe occurred. The largest of these was near che plant, between 15 and 20 meters depth.
2. The reduced survey of 4 May. In May there was litile variation in total numbeis between the 8 stations sampled, most stations having 4,000-5,000 individuals $/ \mathrm{m}^{3}$. However, at $\mathrm{SDC}-.5-2$, only $1,600 / \mathrm{m}^{3}$ were found (Figure 16).
3. The feduced survey of 11 June. In June all stations except the three closest to shore had $20,000-30,000$ individuals $/ \mathrm{m}^{3}$; the three exceptions (SDC-.5-2, DC1, NDC-. 5-2) had only 5,000-9,000/m (Figure 17). The summer dominance of Bosmina longirostris was already established in June (Figure 18); of the five high abundance stations, only the most offshore was dominated by copepods in June. The other four had over 50% Bosmina.

$$
\begin{aligned}
& \text { Figure 13. The spatial distribution of total zooplankton counts (individuals per liter) at } \\
& 12 \text { April 1972. }
\end{aligned}
$$

 stations sampled on 12 April 1972. Heavy lines enclose stations over 40%.

4. The full survey of 16 July. In July most of the near-shore stations had between 30,000 and 80,000 individuals $/ \mathrm{m}^{3}$, and the offshore stations had over $100,000 /$ m^{3} (Figure 19). The line separating these zones roughly corresponded to the $15-$ meter depth contour. Adult Diaptomus and Cyclops were essentially absent in the near-shore zone (Figures 20 and 21). This zone was heavily dominated by Bosmina, which accounted for over 60% of the fauna at every station, and occasionally for as much as $80-87 \%$ (Figure 22).
5. The reduced survey of 11 August. Unlike June and July, the highest zooplankton numbers were found near shore in August (Figure 23). There was, however, large variation between samples collected close together. Station SDC-. 5-2 had $129,000 / \mathrm{m}^{3}$; station DC-2, only about $1 / 2 \mathrm{mile}$ away, had $281,000 / \mathrm{m}^{3}$; and station NDC-. 5-2, equally close to DC-2, had the truly incredible total of $584,000 / \mathrm{m}^{3}$, the highest count we or anyone else has reported from Lake Michigan. There were fewer zooplankton farther offshore in August; the total at DC-6 was $81,000 / \mathrm{m}^{3}$. That the near-shore assemblage continued to be dominated by Bosmina is shown in Figure 24. All of the near-shore stations had over 60% Bosmina. 77% of the animals at station NDC-.5-2 (i.e., 448,000 individuals/m ${ }^{3}$) were this one species. The offshore stations had relatively fewer Bosmina; there, immature copepods a:counted for the largest part of the total fauna.
6. The reduced survey of 8 September. In September, the total zooplankton numbers were much less than in August, most stations having 40,000-50,000 individuals $/ \mathrm{m}^{3}$. Exceptions were $\mathrm{DC}-4\left(97,000 / \mathrm{m}^{3}\right)$ and $\mathrm{NDC}-.5-2\left(13,000 / \mathrm{m}^{3}\right)$ (Figure 25). The Bosmina population had crashed; only $4-6 \%$ of the fauna was Bosmina inshore, and $0-2 \%$ offshore (Figure 26). Immature cyclopoid copepodids made up 20% of the fauna offshore, but only $2-5 \%$ inshore (Figure 27). Immature calanoid copepodids were more important in September, everywhere accounting for $30-40 \%$ of

artomue abundance (\% of total zooplankton assemblage) at 29

$\stackrel{0}{K M}+{ }^{5}$ Figure 21 : The spatial distribut
stations sampled on 16 July 1972 .

$$
\begin{aligned}
& \text { Figure 22. The pat } \\
& \text { stations sampled on }
\end{aligned}
$$

$\mathrm{O}_{K M}^{5}$
Figure 22.
8 September

$\stackrel{+}{K M}+\cdots$
KM
Figur.. 26.
stations ori stations ori 8 Sepeerber 1972.

of the fauna (Figure 28). Daphnia became a significant part of the fauna in September, accounting for about 20% of the fauna at most stations, and nearly half at station SDC-.5-2 (Figure 29).
7. The full survey of 15 October. In October the zooplankton populations showed great variability. Nine stations scattered through the study area had over 50,000 individuals $/ \mathrm{m}^{3}$; abundances at the other 17 stations ranged from 17,000$50,000 / \mathrm{m}^{3}$ (Figure 30). Immature calanoid copepodids were an important constituent of the offshore fauna in October ($40-50 \%$), but close to shore made up less than 20% of the fauna (Figure 31). The second Bosmina pulse, mentioned earlier, was confined to the near-shore area (Figure 32), unlike the Bosmina distributions in June - August.
8. The short survey of 3 November. In November total zooplankton abundances were about $20,000-30,000 / \mathrm{m}^{3}$ at all seven stations (Figure 33). Immature calanoid copepodids were important constituents of the fauna, accounting for 25 45% at all stations (Figure 34). Immature cyclopoid copepodids accounted for about a third of the fauna offshore, but less than 20% near shore (Figure 35). Eubosmina coregoni and Daphnia spp. were both important inshore (Figures 36 and 37).

Summary of Biomass Information From All Stations
The biomass information from all stations is summarized in Figures 38 and 39. The mean values are plotted, along with the standard deviations between stations. The number of stations averaged for each date is given in parentheses. The rather large standard deviations shown in Figures 38 and 39 resulted from combining both inshore and offshore stations. Interpretation of this data has been given in conjunction with stations DC-6, DC-5, and DC-2 above, and need not be

-Yueโdooz [P707 fo \%)

Figure 35. The spatial distribution of relative immature cyclopoid copepodids abundance

 on 8 dates in 19%. brror bars show one sandard divjation betweer stations meana on each date. The number of stacions included on each date is sumer in parentheses.

[^3]repeated here. Figures 38 and 39 are intended to replace the incomplete versions of them which were released in the interim zooplankton report issued in January 1973.

Some Speculations Based on the 1972 Zooplankton Data

The following broad conclusions emerge from the foregoing discussion:

1. In spring, total abundances were low, dominated by copepods, and inshore-offshore differences were unimportant.
2. As the water warmed, an inshore assemblage developed which typically was bounded by the 15 -meter depth contour; it is characterized by a scarcity of copepods, and the dominance of small cladocerans (Bosmina).
3. In fall the inshore fauna persists, but is dominated by mediumsized to large cladocerans of several genera (Daphnia, HoZopedium, Eubosmina), and immature copepods.

Consider also the foilowing points:

1. The direct deleterious effects of the heated effluent may be expected to be greatest in summer, when ambient temperatures are highest, because the sum of ambient temperature and plant will approach or exceed the thermal death point (ca. 35-40C) of the animals.
2. Daphnia galeata mendotae under favorable conditions is capable of a population growth rate of 25% per day -- a population turnover time of only 4 days (Hall, 1964). Smaller parthenogenetic cladoceran species like Bosmina Zongirostris probably can reproduce even faster. Copepods have much lower reproductive rates; their population turnover times are on the order of a few weeks or more.
3. An animal with a high reproductive rate can sustain a high mortality rate without facing extinction.

When these points are considered, it is possible that, to the extent that the 1972 data are typical, the most drastic effects of the cooling water on the zooplankton will be applied at the time and place where the zooplankton populations there are best able to withstand such effects.

Comparison of Past and Present Methods of Zooplankton Enumeration

In order to test whether our present methods of zooplankton enumeration give comparable results to those collected in earlier surveys, we re-counted a few samples which were collected in 1970 and 1971. The early samples were identified only to higher categories. We counted the same samples to species, and then summed them to the same higher categories. Table 36 shows such data for 3 dates in 1970 and one in 1971. All refer to station DC-6. There is close agreement between the two methods. The absence of nauplii and Tropocyclops in both counts can be attributed to the coarser mesh net used in 1970.

Comparison of 1972 Zooplankton Counts With Earlier Data

As stated earlier, the 1971 data have not yet been reported, but they are being worked up as time permits, and will be included in subsequent reports. Counts of samples collected at station DC-6 on 4 dates in 1971 (as well as 3 dates in 1970) are compared with the 1972 DC-6 counts from the same dates in Table 37. The April 1971 fauna was very similar to that found in April 1972. The July samples differ considerably. In July 1971 there were less than half as many animals as in July 1972. The qualitative composition of the fauna was similar, but numbers of nauplii and Bosmina were much smaller in 1971. The July 1970 sample had an even smaller total; again, Bosmina counts were far smaller than in 1972. Nauplii were not sampled in 1970, which also diminishes the total.
Table 36．Comparison of zooplankton counts subsampled with a pipette（A）and the same samples
subsampled with a Folsom plankton splitter（B）from station DC－6 on four dates in 1970 and 1971 ．
$\frac{15 \text { April } 1971^{\star t}}{\frac{\mathrm{~A}}{t \star t} \frac{\mathrm{~B}}{600}}$ $\begin{array}{lll}8 & 8 & 8 \\ 0 & 8 & 1 \\ & \text { N }\end{array}$
8
2
2
0
0
i
i
i

28 Sept	1970^{*}
A	B
$* * *$	
1,700	1,400
12,000	10,400
100	90
	10
500	300
1,900	1,600
10	10
5,000	4,000
200	100
10	40
80	40
400	300
21,900	18,200

＊Collected with $⿰ ⿰ 三 丨 ⿰ 丨 三 一 5$ mesh net．
＊＊Collected with $⿰ ⿰ 三 丨 ⿰ 丨 三 一 10$ mesh net．
＊＊＊Nauplii were not enumerated by the earlier methods．

$\begin{array}{rrr}1,400 & 7,900 & 13,300 \\ 700 & 400 & 700\end{array}$
1,200 400
9,200 12,400 18,400 4, $600 \quad 7,400 \quad 10,600$

 $\begin{array}{rr}100 & 300 \\ 300 \\ & \\ & 300\end{array}$ 앙 0

002

, 300
, 000
20
500
2,200 500

2,100	9,000	10,300
1,900	900	4,000
500	1,000	500
300	500	100
20	20	50
40		60
10	20	200
		20
4,400	21,100	51,500
10		30

$\begin{array}{rrr}4,000 & 11,500 & 11,800 \\ 8,500 & 2,500 & 12,800\end{array}$
02
$\frac{\text { JULY }}{\frac{1970^{*}}{9^{\prime}} \frac{1971^{16}}{4,900}} \frac{1972^{* *}}{35,700}$
$30 \quad 10$
 50 50
100
 inof Buṭanp 9-3a uoṭzezs enumerated recently by present methods.
 Calanoid copepods Immature copepodids Diaptomus minutus Diaptomus oregonensis Diaptomus sicilis Epischura lacustris Limnocalanus macrums

Harpacticoid copepods
Canthocamptus sp.
Cladocerans Bosmina Zongirostris Ceriodaphnia quadrangula Chydomis sphaericus

November		
${ }^{12}{ }^{12 *}{ }^{8}{ }^{8}{ }^{* * *}{ }^{3}{ }^{3}{ }^{\text {a }}$		
300	3,200	200
400		
	10	
1,300	80	500
40	700	40

$\begin{array}{cc}60 \quad 40 \\ 12,700 & 28,600\end{array}$

$\begin{array}{rrr}300 & 700 & 80 \\ 28,200 & 89,800 & 43,600\end{array}$

July		
$\begin{aligned} & \hline 100^{2} \\ & 1990^{2} \end{aligned}$	${ }_{971}{ }^{9 *}$	
	70	100
30	300	700
20	20	
200	400	60

$\begin{array}{rrr}60 & 200 & 1,000 \\ 22,100 & 52,500 & 128,900\end{array}$

5,600 4,700
SPECIES

TOTAL
${ }^{\text {Collected with } \# 5 \text { mesh net. }}$
${ }^{* *}$ Collected with $\# 10$ mesh net.
roin

The September 1971 counts are higher than those from 1972, chiefly due to higher cyclopoid copepod, Bosmina, and Daphnia retrocurva counts in 1971. Recall that by September 1972 the offshore Bosmina population had crashed. The September 1970 total is much smaller than that in 1972 , mainly because cyclopoid copepods were rarer in 1970, and nauplii were unsampled then. Daphnia galeata mendotae and Holopedium gibberum were also rarer in 1970 than in 1972. Again, in all three years the species list is quite similar.

The November 1971 and November 1972 totals for station DC-6 were similar, but in 1972 there were more copepods and fewer cladocerans (Daphnia galeata mendotae, Eubosmina coregoni, and HoZopedium gibberum). The November 1970 collection resembled that from 1972 except that fewer immature copepodids were found in 1970, and nauplii were unsampled then. The November species list is comparable for all three years.

More rigorous comparison between years must be based on more stations, because as the 1972 data show, there can be great variability between sampling stations on a given date.

Work Plan for Zooplankton Pump Entrainment Study

The problem: To determine the numbers and kinds of zooplankton which are entrained by the cooling water pumps, and the effects of passage through the system on them.

Requirements:

1. Devise a sampling system which collects adequate water volume (ca. $0.25 \mathrm{~m}^{3} / \mathrm{min}$) with minimum damage to the plankton.
2. Devise a plan to obtain representative samples from the incoming water so that the same water mass can be sampled at the discharge. This must be done so that the system is sampled adequately, but with minimum sampling effort.
3. Devise a similar sampling plan for the discharge area.
4. Devise a simple, effective means of determining whether a zooplankter is alive or dead.
5. Devise an incubation system to be ised for discharge samples, which mimics the thermal decay that the plume water experiences.
6. Devise a statistical design with adequate replication to provide conclusive results.
7. Meet requirements $1-6$ in time so that mechanical effects of cold water pumping this summer can be conclusively determined.
8. Meet requirements 1 - 7 in time so that as soon as warmed water is pumped its effects on the zooplankton can be conclusively determinad.

Progress to date: We began work on chis problem in January 1973. We have obtained two diaphragm pumps which we believe mett requirement \#1. Freliminary sampling conducted in January and February indicated that zooplankters are vertically homogeneous in the intake forebay, out that they are horizontaliy nonuniform. Further studies planned for March and April should meet requirements ${ }^{2}$ and \#3. Progress toward accomplishment of requirement \#4 has been disappointing so far. We have do date not been able to verify that the vital staining method of Dressel et al. (1972) works on our material. Other methods are being evaluated in the laboratory.

References

Cassie, R. M. 1971. Sampling and statistics, p. 174-209. In: Edmondson, W. T., and G. G. Winberg (eds.) A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook No. 17.

Dressel, D. M., D. R. Heinle, and M. C. Grote. 1972. Vital staining to sort dead and live copepods. Chesapeake Science 13:156-159.

Gannon, J. E. 1971. Two counting cells for the enumeration of zooplankton micro-crustacea. Trans. Am. Micros. Soc. 90:436-490.

Gannon, J. E. 1972. A contribution to the ecology of zooplankton Crustacea of Lake Michigan and Green Bay. Ph.D. Thesis, University of Wisconsin. 257 p. (Univ. Microfilms 非72-24, 879)

Ha11, D. J. 1964. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45:94-112.

Longhurst, A. R., and D. L. R. Seibert. 1967. Skill in the use of Folsom's plankton splitter. Limnol. Oceanogr. 12:334-335.

McEwen, G. F., M. W. Johnson, and T. R. Folsom. 1954. A statistical analysis of the performance of the Folsom plankton sample splitter, based upon test obsarvations. Arch. Meteorol. Geophys. Bioklimatol. Ser. A. 7:502-527.

Nauwerck, A. 1963. Die Beziehungen zwischen Zooplankton und Phytoplanktun im See Erken. Symb. Bot. Upsal. 17(5):1-163.

Ricker, W. E. 1938. On adequate quantitative sampling of the pelagic net plankton of a lake. J. Fish. Res. Bd. Canada 4:19-32.

Robertson, A. 1966. The distribution of calanoid copepods in the Great Lakes. Univ. Mich., Grt. Lks. Res. Div., Pub1. 15:129-139.

Ward, J. 1955. A description of a new zooplankton counter. Quart. J. Micros. Sci. 96:371-373.

Wells, L. 1970. Effects of alewife predation on zooplankton populaticos in Lake Michigan. Limnol. Oceanogr. 15:556-565.

Psammo-Littoral

The psammo-littoral portion of the study is not completed at this time and is omitted from the report. Plans are to issue that data under separate cover later in the spring of 1973.

A. 6 Study of Aquatic Macrophytes

An underwater study was conducted off the Donald C. Cook Nuclear Plant for macrophyton (rooted aquatic plants) on 23 october 1972. Diving operations were conducted from an 18 foot pontoon boat owned by the Indiana and Michigan Electric Company. The support vessel was powered by a 20 horsepower outboard engine and towed the diver along four transects (Fig 40) at approximately 2 knots. The towing apparatus consisted of 100 feet of $3 / 8$ inch nylon line tied at one end to a bridle on the support vessel. A tow bar was attached to the other end of the tow line.

Surface supplied diving equipment was used for this survey. Air was supplied by a high pressure cascade system and a hard wire communication system was used to relay the diver's observaticns to surface personnel. The diver wore a variable volume dry suit which allowed control of displacement and buoyancy.

This survey began north of the Cook Plant. Transect 1 was started at a depth of 20 feet and continued in line with the North Range Poles out to a depth of 50 feet. The diver stayed underwater and the support vessel proceeded approximately 1300 feet south. Transect 2 started at a depth of 50 feet and continued in toward shore to a depth of 15 feet. The diver surfaced and the support vessel proceeded to the area south of the Cook Plant. Transect 3 started at a depth of 18 feet and continued offshore directly in line with the South Range Poles out to a depth of 50 feet. The diver again stayed underwater as the support vessel proceeded approximately 1.300 feet north. Transect 4 started at a depth of 50 feet and proceeded back toward shore to a depth of 15 feet. The transects are shown in Figure 40.

Figure 40. Macrophyte Survey, 28 October 1972.

Date	28 October 1972 Dive No. 1
Location	Transect No. 1 - directly off the North Range Poles
Depth	20-50 ft
Team	$\begin{aligned} & \text { Diver/Supervisor }- \text { Robert F. Andezeon } \\ & \text { Tender } \\ & \text { Boat Operator } \end{aligned}$
Dive Time	40 minutes
Depth (ft)	Observations
20	Near zero visibility. Water temperature $52^{\circ} \mathrm{F}$. Bottom fire clean sand exhibiting bifurcacing ripole marks with wave lengths of 6 inches and heights of $1,5-2$ inches.
15	Clean fine sand bottom. Bifurcating rippie marks similar to those observed at 20 ft . Very littic detritus in the troughs of the ripple marks.
1.4	Bifuzcat ng ripple marks with wave lengths of 6 laches C.ean sand botcom with very ifttle detritus in between uldple warks.
20	Clean fine sand bortom.
23	Fine sand bottom exhibiting bifurcatlag ripple marks with wave lengths varying from $3-6$ inches. Wlean sand bottom Inaicates a high degree of turbulence. Observed a patch S^{\prime} wooden dehris.
26	Large bifurcating ripple marks with weve lengths varying from 18-24 inches and heights varying from $4-6$ inches. Bottom type composed of a medium sand. Very littie detritus accumulated in the troughs of these large ripple narks.
25	Large bifurcating ripple marks similar to those found at 26 ft , but these have smaller ripple marks in between the large ones. Little detritus in the troughs of ripple marks.
23	Medium sand bottom exhibiting raple marks with wave lengths varying from 6-8 inches and heights varying from 2-3 inches.
21	Small bifurcating ripple marks with wave lengths varying from $4-6$ inches and 1.5 inches in height. Bottom visibility about 1 ft .
25	Bottom type fine sand with bifurcating ripple marks. Observed occasional piece of wood debris and detritus.

Clean fine sand bottom exhibiting ripple marks identical to those observed at 21 ft .

Fine sand bottom exhibiting bifurcating ripple marks with wave lengths varying from $2-4$ inches and 1 inch in height. Bottom water temperature was $52^{\circ} \mathrm{F}$.

Observed small silt pocket about 1 ft in diameter.
Observed another small pocket of silt.
Passed another small area of silt. Fine sand bottom with bifurcating ripple marks. Very little detritus in troughs.

Bottom visibility 1 ft . Bifurcating ripple marks with wave lengths varying from 4-6 inches and 1 inch in height.

Little detritus in troughs of ripple marks.
Passed silt pocket 18 inches in diameter. Ripple marks identical to those observed at 37 ft .

Bifurcating ripple marks exhibiting wave lengths of 1 ft and heights of 2 inches. Passed one silt pocket about 3 ft in diameter and another estimated to be 14-18 ft wide. Areas of silt contain dark grey gelatinous silt 4-5.5 inches in depth.

Bifurcating ripple marks with wave lengths varying from 4-6 inches and a height of 1.5 inches observed. Fine layer of detritus overlaying fine sand.

Passed another silt pocket about 4 ft wide. Surface of silt pocket covered with small dark spots $1 / 4$ inch in diameter.

Passed another silt pocket about 6-8 ft wide and 2-3 inches in depth. Small dark spots also present on the surface of the silt. Bifurcating ripple marks identical to those observed at 44 ft . Larger accumulations of detritus in the troughs between ripple marks.

Passed large pocket of silt estimated 25-30 ft wide and 2-3 inches deep. Small dark spots $1 / 4$ inch in diameter covering the surface of silt pockets.

Fine sand bottom exhibiting bifurcating ripple marks with wave lengths varying from $4-6$ inches and a height of $1 / 5$ inch. Passed area of silt about 10-12 ft wide. Surface of silt covered with black spots.

The trend of the ripple marks observed during Transect 1 was in a northsouth direction. No aquatic macrophytes were observed along this transect. The frequent storms that have occurred this fall have kept detritus from accumulating on the bottom especially in the area of the sandbars in shallow water. The bottom along this entire transect had been swept clean of detritus indicating a high degree of turbulence. The diver stayed underwater and was towed south to the starting point of Transect 2 .

Date 28 October 1972 Dive No. 1
Location Transect No. 2-1300 ft south of Transect No. 1

Depth 50-15 ft
Team Diver/Supervisor - Robert F. Anderson
Tender - Tom Bottrell Boat Operator - Bill Yocum

Dive Time 42 minutes

Depth (ft)
Observations
50 Passed several silt pockets varying around $8-12 \mathrm{ft}$ in width. Observed several more silt pockets about 15-20 ft in width and 2-3 inches in depth. Small dark spots $1 / 4$ inch in diameter covering surface of silt pockets. Passed another silt pocket about 20-25 ft wide and 2-3 inches in depth. Silt pockets composed of dark grey gelatinous silt with small dark spots covering the surface.

43 Fine sand bottom exhibiting bifurcating ripple marks with wave lengths of $4-6$ inches and heights of $1-2$ inches. Passed several silt pockets about $15-20 \mathrm{ft}$ in diameter.

47 Passed several silt pockets about 3 ft in diameter. Observed silt pocket about 20 ft wide and $4-6$ inches in depth. Fine sand bottom exhibiting ripple marks identical to those observed at 48 ft . Thin layer of detritus in the troughs between ripple marks. Passed an occasional patch of wood debris.

Large ripple marks with a wave length of about 3 ft and height of 6 inches.

Fine sand bottom exhibiting bifurcating ripple marks with wave lengths varying from 4-6 inches and a height of 1 inch. Passed by a large pocket of silt estimated 30 ft wide and 6 inches deep.

Observed a few small pockets of silt 1-2 ft in diameter.
Passed a silt pocket about 6 ft wide and 2 inches deep. $\mathrm{Ob}-$ served several silt pockets 1-2 ft in diameter.

Fine sand bottom exhibiting bifurcating ripple marks with wave lengths of 4-6 inches.

Passed a large area of silt about 40 ft wide and 2-3 inches deep. Passed another area of silt estimated to be 30 ft wide. Fine sand bottom.

Fine sand bottom exhibiting bifurcating ripple marks with wave lengths of 4 inches. Passed several pockets of silt with widths estimated from 20-40 ft and depths of $2-3$ inches.

Fine sand bottom. Bifurcating ripple marks with wave lengths of 4-6 inches and a height of 1.5 inches.

Fine sand bottom exhibiting bifurcating ripple marks identical to those observed at 25 ft .

Clean sand bottom. No detritus or debris found in this area near a sandbar.

Parallel ripple marks with a wave length of 8 inches and a height of 2 inches.

Fine sand bottom exhibiting bifurcating ripple marks. Observed several chunks of grey clay on the bottom.

Fine sand bottom exhibiting bifurcating ripple marks with wave lengths varying from 4-6 inches and a height of 2 inches.

Bifurcating ripple marks same as those observed at 21 ft . Little detritus present.

Conditions same as those observed at 16 ft .
Observed a small pocket of silt about 6 ft wide. Bifurcating ripple marks present with wave lengths varying from 4-6 inches and a height of 2 inches.
Dive terminated. Bottom water temperature was $52^{\circ} \mathrm{F}$.

Small amounts of detritus and debris were evident along this transect when compared to the conditions observed last year. No macrophytes were observed on Transect 2 .

18

Bottom type composed of nedim sand exilbiting bifurcating ripple marks with a wave length of 6 inches and a height of 2 inches.

Ripple marks with a wave leagth of 6 inches and a height of 2 inches.

Bifurcating ripple marks with a wave loggth of 4 inches and a height of 1.5 inches.

Clean fine sand bottom with ripple marks same as those found at 25 ft .

Passed several pockets of silt about 6 ft wide and 2 inches deep.

Observed a silt pocket 6 or 7 ft wide and 2 inches in depth. Passed a silt pocket about 12 ft wide and 3 inches deep. Passed another silt pocket about 4 ft wide and 2 inches deep. Bottom type composed of a fine sand exhibiting bifurcating ripple marks with a wave length of 2.5 inches and a height of $3 / 4$ inch. Passed another silt pocket estimated at 12 ft wide.

Little detritus found in between ripple marks.
Clean fine sand bottom exhlbiting bifurcating ripple marks with a wave length of 4 inches and a height of 1 inch.

Observations

43 Bottom type composed of a medium sand exhibiting bifurcating ripple marks with wave length varying from 1 ft to 18 inches and heights varying from 2-3 inches. Fine layer of detritus in the troughs between ripple marks.

44 Observed occasional clump of detritus composed of roots from sedges that had been washed into the area.

Bottom type was a medium sand. Bifurcating ripple marks observed with wave lengths varying from 18 inches to 2 ft and a height of 4 inches.

Bottom exhibiting bifurcating ripple marks with wave lengths varying from 4-6 inches and a height of 1 inch.

Observed 2 small silt pockets. One was 1 ft in diameter and the other was 3 ft in diameter.

Fine sand bottom exhibiting bifurcating ripple marks with wave lengths from 18 inches to 2 ft and a height of 3 inches. A heavy accumulation of light brown organic material was observed in the troughs between these ripple marks. Observed a pocket of silt in the trough between the ripple marks. $\mathrm{Ob}-$ served a pocket of silt about 40 ft wide and 3 inches deep. Bifurcating ripple marks were observed on the surfaces of the silt pockets.

The trend of the ripple marks on this transect was also in a north-south direction. The surfaces of the silt pockets contained the small dark spots observed on Transect 1 and 2. The frequency and pattern of the ripple marks
indicated a high degree of turbulence on the bottom. No macrophytes were observed along this transect. Diver remained underwater and was towed to the starting point of Transect 4.

Date	28 October 1972	Dive No. 2			
Location	Transect 4	- 1300 feet north of Transect 3			
Depth	$50-15 \mathrm{ft}$				
Team	Diver/Supervisor - Robert F. Anderson Tender Boat Operator	- Tom Bottrell			
Dive Time Yocum			\quad		30 minutes
:---	:---				

Fine sand bottom exhibiting bifurcating ripple marks with wave lengths of 18 inches to 2 ft and a height of 3 inches. Patches of light brown organic detritus observed in the troughs between ripple marks.

Fine sand bottom exhibiting ripple marks with wave lengths varying from 4-6 inches and a height of 1.5 inches.

Bottom type composed of a medium sand. Observed bifurcating ripple marks with wave lengths varying from 18 inches to 2 ft and a helght of 3 inches. Fine layer of light brown organic detritus in the troughs between the ripple marks. Observed a few pieces of wood debris that were covered with snails.

Bottom type of fine sand.
Observed bifurcating ripple marks with wave lengths varying from 4-6 inches and a height of 1.5 inches.

Fine sand bottom exhibiting bifurcating ripple marks with a wave length of 2 incaes and a height of $3 / 4$ inch.

Observed two silt pockets. One was about 2 ft wide and the other was abour l_{i} ft wide. Both were $2-3$ inches in depth.

Passed a silt pocket that was about 10 ft wide. Observed bifurcating ripple marks with a wave length of 3 inches and a height of $3 / 4$ inch. Passed three silt pockets that had estimated widths of 10,15 , and 3 ft .

Bottom composed of a fine sand exhibiting bifurcating ripple marks with a wave length of 3 inches. Observed two pockets of silt. One was about 3 ft in diameter and the other was estimated at 12 ft in diameter.

Observed bifurcating ripple marks with a wave length of 3 inches and a height of $3 / 4$ inch. Found several silt pockets about 3 ft wide in this area.

Medium sand bottom exhibiting bifurcating ripple marks with wave lengths varying from 4-6 inches and a height of 1.5 inches.

15
Fine sand bottom exhibiting bifurcating ripple marks with wave lengths varying from $4-6$ inches and a height of 1.5 inches. Dive was terminated.

The surface of the silt pockets observed along this transect contained
the small dark spots observed on Transects 1,2 , and 3 . No macrophytes were
observed on this transect. The abundance of ripple marks along this entire
transect indicated a high degree of turbulence on the bottom.

A. 7 Study of Benthic Organisms
 S. C. Mozley

Introduction

In order to make what follows as clear as possible, a review of the benthos survey program is presented. Starting in July 1970, major surveys of a 46-station grid were conducted in spring, summer, and fall, through April 1972. From these surveys, selected samples were analyzed to the most detailed taxonomic levels achievable at the time. The results of the July 1970 survey have been reported in Part IX of our report series. Using the same methods, we processed samples from November 1970, and April and July 1971, to obtain seasonal information on community structure.

In May 1972, the sampling design was changed to allow for more rigorous statistical treatment of benthos data and to allow determination of the monthly status of the benthos near the plant site between major seasonal surveys. A stratified random sampling design was instituted in the seasonal survey of July 1972 to satisfy prerequisites for statistical analysis and to reduce varfances of quantitative estimates.

At present, benthos data have been processed at preliminary levels through the first stratified random survey of July 1972. The program just described was continued through October 1972 and will continue in 1973. For the monthly surveys nine stations of the original systematic survey plan were sampled in triplicate. The program now consists of major spring, summer, and fall seasonal surveys and monthly between-seasonal surveys of a nine station reduced sampling grid.

Because many discrete samples are needed for statistical analysis, the size of individual samples was reduced for the July 1972 survey by modifying
a standard ponar grab. The new ponar grab can be used to obtain samples $1 / 3$, $2 / 3$, or equal to an ordinary ponar, by retaining the contents of one, two, or all three compartments. The entire sample is retained from triplicate casts in the relatively depauperate beach zone, while only the central $1 / 3$ of the grab sample is retained from each of the triplicate casts at offshore stations.

Data at the major taxon level for the seasonal surveys of September 1970 through April 1972 are given in Section 1. Statistical treatment of the data presented in Section 1 is planned for a later date. Section 2 presents the benthos community structure as determined by major taxa. A detailed analysis of the stratified random sampling seasonal survey of July 1972 is presented in Section 3.

Brief notes on topics for which limited data are arailable, but which are important to the considerations of effects of the plant on benthos, can be found in Sections 4 and 5. Section 4 gives information on the epibenthic, or semiplanktonic opossum shrimp, Mysis relicta. Preliminary qualitative information about the benthos found in the cooling water intake forebay is given in Section 5.

From July 1970 through April 1972; seasonal benthos data at the major taxon level were collected at 46 stations per survey. The primary objective of these surveys was to obtain a thorough background of information about seasonal and year-to-year variations in the benthos prior to plant operation. Follow-up statistical analyses of the data will be based on various recombinations of the data, depending on the patterns which appear. For instance, stations located near the plant could be averaged and compared with stations farther from the plant.

The strictly systematic selection of station locations, however, violates one of the requirements of statistical tests for differences of means, such as the t-test. Theoretically, stations within a defined region should be chosen at random, so that every point in the region has an equal chance of being sampled. Nevertheless, it is common practice in benthos surveys to ignore this requirement and assume that a strictly systematic sampling design would give the same results. The more suitable sampling design implemented in July 1972 will allow a test of the assumption that randomization of locations is not necessary.

Since we anticipate that analyses will be conducted on these earlier data, they are listed in alternating order of proximity to the plant (2 miles or less north or south from the DC transect, versus 4 or 7 miles from the DC transect), and in order of increasing distance from shore: $1 / 4 \mathrm{mile}, 1 / 2$ to $3 / 4$ mile, $1 / 4$ mile to $21 / 4$ miles, 4 miles , and 7 miles (equivalent metric range: 400 m to 11 km). The techniques for these surveys have been described in Part IX of this series of reports. Tables 38 through 44 contain complete listings of available data for each major survey at the higher taxon level. Locations of the stations are shown in Figure 41.

Table 38. Numbers $/ m^{2}$ of benthic macrofauna by major taxa in September, 1970. Data are based on two combined samples per station. The conversion factor for original counts is 8.67. (Amph - Amphipoda; 01ig - 01igochaeta; Sphr - Sphaeriidae; Chir - Chiioncmidae; Hiru -- Hirudinea; Gast - Gastropoda.)

Station	Amph	01ig	Sphr	Chis	Hiru	Gast	TOTAL
DC-1				-no data-			ND
NDC-. .5-1	17	321		34			372
SDC-.5-1	34	1,008	399	286			1,727
NDC-1-1	26	165	8	295	8		502
SDC-1-1		69		8			77
NDC-2-1		620	34	34		8	696
SDC-2-1		113	17	8			138
NDC-4-1	8	26		26			60
NDC-7--1		78		26			104
SDC-4-1	26	69	8	234	17		354.
SDC-7-1	113	182	26	204		26	451
DC-2	539	1,225	426	269	34		2,493
NDC-. .25-1	373	730	113	86	34		1,336
SDC-.25-1	539	1,226	426	270	34		2,495
NDC-. 5--2	60	2,260	321	191	8		2,240
SDC-. 5-2	11.3	556	443	1.22		26	1,260
NDC-1-2	2,930	23,267	923.	547	8	8	27,681
SDC-1-2	226	2,478	78	217	26		3,025
NDC--2-2	43	782	8	199	8		1,040
SDC-2-2	95	1, 3084	173	191		17	1,780
NDC-4-2	17	121		34			172
NDC-7-2				8			8
NDC-7-3	869	1,495	130	208	43		2,745
SDC-4-2	43	1,043	182	1.91	8	?	1,475
SDC-7-2		332	26	34			442
SDC.-7-3	121	1,156	286	286			1,849
DC.?	1,112	3,964	139	295	139	26	5,675
NDC- . 5-j	1,356	852	86	156			2,450
SDC-. 5-3	1,339	1,286	1,286	443	104	86	4,544
NDC-2-3	452	313		620			1,385
SDC-2-3	1,678	5,590	886	782	17		8,953
DC. 4	4,382	11,181	2,686	620	620	217	19,706
NDC-1-3	6,051	9,338	1,886	95		95	17,465
SDC-1-3	4,530	5,156	7,564	60		69	17,379
NDC-4-3	799	139	17	86			1,042
NDC-7-4	956	226					1,182
SDC-4-3	4,686	8,199	2,156	260		34	15,335
SDC-7-4	1,843	23,519	599	617	69	69	26,716
DC-5	5,860	4,956	460	43	17	34	11,370
NDC-2-4	3,634	4,086	617	26			6,363
SDC-2-4	4,138	7,990	495	17	17		12,657
NDC-7-5	2,234	2,625	573	26	43		5,501
SDC-7-5	1,225	4,973	478		52		6,728
SDC-4-4	3,278	3,451	104	8			6,841
DC-6	3,530	3,721	52	8			7,311
NDC-4-4	5,451	4,860					10,311

Table 39. Numbers/m ${ }^{2}$ of benthic macrofauna by major taxa in November, 1970. Data are based on two combined samples per station. The conversion factor for original counts is 8.67. (See Table 38 for legend)

Station	Amph	011g	$\underline{\text { Sphr }}$	Chir	Hiru	Gast	TOTAL
DC-1				no data			ND
NDC-. 5-1	8	34		8			50
SDC-. 5-1	26	452	147	260	8		893
NDC-1-1	8	252	156				416
SDC-1-1		2,252		8	8		2,268
NDC-2-1	26	356	330	165			877
SDC-2-1		43	95				138
NDC-4-1	34			34			68
NDC-7-1		43					43
SDC-4-1		8		8			16
SDC-7-1	26			43			69
DC-2	17	2,208	808	582	8	17	3,640
NDC-. 25-1	478	4,956	2,252	712	95	86	8,579
SDC-. $25-1$	347	4,051	313	313	17		5,041
NDC-. 5-2	69	1,330	712	217	43		2,371
SDC-. 5-2	69	730	860	191			1,850
NDC-1-2	52	843	234	234			1,363
SDC-1-2	95	1,043	1,017	234	8	86	2,483
NDC-2-2	47	3,025	295	286	8	8	3,669
SDC-2-2	69	1,678	478	191	34	52	2,502
NDC-4-2	78	452	52	104			686
NDC-7-2	121	1,182	43	199			1,545
NDC-7-3	504	426	34	43			1,007
SDC-4-2	34	608	1,060	252	17		1,971
SDC-7-2	26	1,017	121	104			1,268
SDC-7-3	95	39,727	5,338	2,217	26	34	47,437
DC-3	173	1,608	60	599	8	17	2,465
NDC-. 5-3	1,052	3,912	1,312	382	8	95	6,761
SDC-. 5-3	695	1,495	513	339			3,042
NDC-2-3	321	5,190	313	1,869	69		7,762
SDC-2-3	373	13,346	1,739	1,469	17	17	16,961
DC-4	3,373	4,347	1,704	252	60	26	9,762
NDC-1-3	2,599	1,269	269	104			4,241
SDC-1-3	2,095	10,894	3,347	504	43	443	17,326
NDC-4-3	2,382	1,017	426	208			4,033
NDC-7-4	1,582	4,712	1,034	1,034	8	17	8,387
SDC-4-3	3,173	1,286	626	139		43	5,267
SDC-7-4	712	1,878	130	208		17	2,945
DC-5	4,712	1,078	182	60			6,032
NDC-2-4	7,416	8,721	1,999	52	26	34	18,248
SDC-2-4	391	60	8	52	8		519
NDC-7-5	2,782	5,208	1,712	165	43	17	9,927
SDC-7-5	417	5,843	2,469	530	130	43	9,432
SDC-4-4	2,330	6,538	1,078	17	8	17	9,988
DC-6	4,104	3,817	264		8	8	8,201
NDC-4-4	8,799	9,068	4,660	69	8		22,604

Table 40. Numbers $/ \mathrm{m}^{2}$ of benthic macrofauna by major taxa in April, 1971. Data are based on one sample per station. The conversion factor for original counts is 18.13. (See Table 38 for legend)

Station	Amph	011g	Sphr	$8 \times$	Hiru	Gast	TOTAL
DC-1		90	36				126
NDC- . 5-1	72	108	18				198
SDC-. 5-1		72		54	18		144
NDC-1-1		126	36				162
SDC-1-1					18		18
NDC-2-1				36			36
SDC-2.1			36	18			54
NDC-4-1		18			18		36
NDC-7-1		36					36
SDC-4-1		18					18
SDC-7-1		18					18
DC-2	290	2,030	870	308		36	3,534
NDC-. . 25-1	181	1,939	552	290	36	36	3,044
SDC-. 25-1	36	54	18	18			126
NDC- . 5-2	18	275	54	235			578
SDC-- 5-2		815	143	145		18	1,123
NDC- -1-2	36	3.154	507	362			4,059
SDC-1-2		18				18	36
NDC- $-2-2$	18			18			36
SDC-2-2	18	18		90			126
NDC-4-2				antimal			none
NDC-7-2		108	18	36			162
NDC-7-3	217	217	326	36			796
SDC-4-2	54	271	72	253	36		686
SDC-7-2		362	326	181			869
SDC-7-3	36	3,281	271	3.63			3,751
DC-3	18	36	652				706
NDC-- . 5-3	290	7.415	54	107	28		8,484
SDC- . 5-3	416	598	1,260	235		30	2,445
NDC-2-3	380	3,335	471	253	18	18	4,475
SDC-2-3	453	1,468	308	108		36	2,373
DC- 4	2,792	2,792	1,86?	163	54	181	7,849
NDC-1-3	181	1,396	344	54	18		1,993
SDC-1-3	108	181	416	5\%		36	795
NDC-4-3	36	90	18				144
NDC-7-4	1,305	4,731	380	217		18	6,551
SDC-4-3	126	- 3,136	1,758	471	181	163	5,335
SDC-7-4	416	- 36	18	18	18		. 506
DC-5	6,943	14,340	1,142	271	54		22,750
NDC-2-4	9,391	6,327	888	18	18	18	16,660
SDC-2-4	4,858	5,148	2,918	36		36	12,996
NDC-7-5 SDC-7-5	2,737	5,874	3,118	235	145	126	12,235
SDC-7-5 SDC-4-4	416 2465	6,907	380 2.284	145			7,848
SDC-4-4 DC-6	2,465 6,200	5,692	2,284	18 163		18	10,477
DC-6 NDC-4-4	6,200 10,007	9,173 5,765	2,574	163			18,110
NDC-4-4	10,007	5,765	924	308			17,004

Table 41. Numbers $/ \mathrm{m}^{2}$ of benthic macrofauna by major taxa in July, 1971. Data are based on one sample per station. The conversion factor for original counts is 18.13. (See Table 38 for legend)

Station	Amph	011g	Sphr	Chir	Hiru	Gast	TOTAL
DC-1				-no data-			ND
NDC-. 5-1		145		670			815
SDC-. 5-1	18			235			253
NDC-1-1		181		1,051			1,232
SDC-1-1		416		453			869
NDC-2-1	36	72		453			561
SDC-2-1	18	18	18	362			416
NDC-4-1		108		308			416
NDC-7-1		36	18	72			126
SDC-4-1				-no data-			ND
SDC-7-1	18	36		489			543
DC-2	1,522	1,015	507	507	18	54	3,623
NDC-. 25-1	1,305	235	852	1,087		18	3,497
SDC-. 25-1	1,722	1,450	979	2,501	54	18	6,724
NDC-. 5-2	181	2,012	326	217			2,736
SDC-. 5-2	181	1,087	217	290	36	18	1,829
NDC-1-2	90	489	290	924			1,793
SDC-1-2	1,541	5,275	1,323	1,051	18	36	9,244
NDC-2-2	90	833	181	145			1,249
SDC-2-2	145	1,667	181	271	145	36	2,445
NDC-4-2	36	36		72			144
NDC-7-2	72	997	54	163	18		1,304
NDC-7-3	779	54	54	54			941
SDC-4-2	108	707	90	217	308	18	1,448
SDC-7-2	18	652	36	145	18		869
SDC-7-3	525	18	199	145		36	923
DC-3	670	326	18	18			1,032
NDC-. 5-3	145	6,037	924	126		54	7,285
SDC-. 5-3	1,831	616	90	36			2,573
NDC-2-3	2,520	2,538	235			18	5,311
SDC-2-3		1,522	18	36			1,576
DC-4	4,496	8,847	670		36	290	14,339
NDC-1-3	2,175	181	380	72			2,808
SDC-1-3	1,323	199	253			18	1,793
NDC-4-3	1,323	253	54	54			1,684
NDC-7-4	2,320	1,069	181		54		3,624
SDC-4-3	4,550	5,239	2,810	90	72	145	12,906
SDC-7-4	3,100	10,533	924	36	18		14,611
DC-5	10,606	2,973	4,079			145	17,803
NDC-2-4	20,631	6,925	2,284	54		18	29,912
SDC-2-4	8,539	4,514	2,066	18		18	15,155
NDC-7-5	8,212	1,178	3,988	54		90	13,522
SDC-7-5	2,139	6,508	1,414	90	18	72	10,241
SDC-4-4	4,097	6,581	2,375	18		72	13,143
DC-6				-no data-			ND
NDC-4-4	10,424	6,254	3,063	72			19,813

Table 42. Numbers $/ \mathrm{m}^{2}$ of benthic macrofauna by major taxa in September, 1971. Data are based on one sample per station. The conversion factor for original counts is 18.13. (See Table 38 for legend)

Station	Amph	0118	Sphr	Chy:	Hiru	Gast	TOTAL
DC-1				-ro dints-			ND
NDC-. 5-1		924	72	163			1,159
SDC-. 5-1		1,269	90	290	54		1,703
NDC-1-1		453		181			634
SDC-1-1		181		634			815
NDC-2-1				290			290
SDC-2-1	18	18		263	18		217
NDC-4-1	18	18	18	235			289
NDC-7-1				$7 ?$			72
SDC-4-1	18	18		14.5			181
SDC-7-1				199		18	217
DC-2	1,504	1,722	398	398	90	18	4,130
NDC-, 25-11	1,142	2,084	435	435	235	36	4,36;
SDC-- $25-1$	1,250	1,740	580	507	271		4,348
NDC-- 5-2	36	2,538	52.5	199	18	18	3,334
SDC-. 5-2	126	2,139	471	1.45	72	18	2,971
NDC-1-2	416	580	235	344		18	1,593
$\mathrm{SOC-1-2}$	1,087	4,351	1,341	398	199	14.5	7,32j
NDC-2-?	181	308	18	199			706
SDC-3-2	145	1,976	416	126	90	72	2,825
NDC-4-2	72	108		145	18		343
NDC-7-2	1.8	217	36	72			343
NDC-7-3	1,450	6,073	1,069	235	72	54	8,953
SDC-4-2	108	2,103	253	181	36	30	2,717
SDC-7-2		670	72	181	18		841
SDC-7-3	145	797	90	56.			2,594
DC...?				-oc data-			\cdots
NDC-- $5-3$	4,206	1,269	471	380		35	6,352
SDC-. 5-3	1,667	5,094	1,015	562	54	18	8,410
NDC-2-3	743	290	54	290			1,377
$5 \mathrm{DC-2-3}$	1,976	2,356	852	344	36	18	5,582
DC-4	3,571	2,066	1,468	90		18	7,213
NDC-1-3	4,351	5,094	1,414	72	18	36	10,985
SDC-1-3	6,109	5,692	779	36		36	12,652
NDC-4-3	1,577	2,683	290	54		18	4,622
NDC-7-4	6,635	6,744	2,320	1.45	253	18	16,115
SDC-4-3	6,381	2,773	1,069	90		145	10,458
SDC-7-4	1,559	2,701		181			4,441
DC--5	13,325	8,031	3,372	54			24,782
NDC-2-4	18,601	8,448	979	90		36	28,154
SDC-2-4	6,146	8,013	1,595	90	18		15,862
NDC-7-5	5,602	6,689	1,105	181		36	13,613
SDC-7-5	3,136	6,780	906	108	18	18	10,966
SDC-4-4	6,291	4,768	616	72	36	36	11,819
DC-6	11,494	6,418	3,209	18			21,139
NDC-4-4	8,629	4,260	3,227		36		16,152

Table 43. Numbers $/ \mathrm{m}^{2}$ of benthic macrofauna by major taxa in November, 1971. Data are based on one sample per station. The conversion factor for original counts is 18.13. (See Table 38 for legend)

Station	Amph	O1ig	Sphr	Chir	Hiru	Gast	TOTAL
DC-1	18	54		54			126
NDC-. 5-1	18	36	18				72
SDC-.5-1		108		36	18		162
NDC-1-1				animals-			none
SDC-1-1	18	108		36			162
NDC-2-1		18	36	36			90
SDC-2-1		54		435	54		543
NDC-4-1				animals-			none
NDC-7-1				no data-			ND
SDC-4-1				108	18	18	144
SDC-7-1				no data-			ND
DC-2		1,269	326	308	18		1,921
NDC-. 25-1	18	453	344	308	18	126	1,267
SDC-. 25-1	308	2,574	308	344	54	36	3,624
NDC-. 5-2	36	308	181	36	18	18	597
SDC-. 5-2	108	2,066	108	362	54	54	2,752
NDC-1-2	126	290	1,976	380		90	2,862
SDC-1-2		543	126	72			741
NDC-2-2	54	290	181	253			778
SDC-2-2	90	398	163	271	18	145	1,085
NDC-4-2	18	290		235			543
NDC-7-2				no data-			ND
NDC-7-3				no data-			ND
SDC-4-2		199	54	54	18	72	397
SDC-7-2				no data-			ND
SDC-7-3				no data-			ND
DC-3		1,541	54	543			2,138
NDC-. 5-3	435	14,775	1,939	1,939	181	126	19,395
SDC-. 5-3	235	670	145	507		36	1,593
NDC-2-3	271	253	126	72	18		740
SDC-2-3	525	2,338	598	271	72	18	3,822
DC-4	217	8,938	2,284	1,396	271	217	13,323
NDC-1-3	815	4,496	1,450	308	235	72	7,376
SDC-1-3	163	12,147	3,789	1,631	580	398	18,708
NDC-4-3	362	90		54			506
NDC-7-4				no data-			ND
SDC-4-3	2,918	3,988	1,105	217	18	308	8,554
SDC-7-4				no data-			ND
DC-5	10,805	6,617	1,269	108	18	145	18,962
NDC-2-4	7,106	3,771	870	18	18	54	11,837
SDC-2-4	4,006	9,119	1,649	271	36	18	15,099
NDC-7-5				no data-			ND
SDC-7-5				no data-			ND
SDC-4-4	3,172	7,723	960	108	18	54	12,035
DC-6	8,992	6,925	1,250	18			17,185
NDC-4-4	12,962	6,943	1,976	36			21,917

Table 44. Numbers $/ \mathrm{m}^{2}$ of benthic macrofauna by major taxa in April, 1972. Data are based on one sample per station. The conversion factor for original counts is 18.13. (See Table 38 for legend)

Station	Amph	01ig	Sphr	Chts	Hiru	Gast	TOTAL
DC-1				36			36
NDC-. 5-1		18					18
SDC-. 5 -1	18	362	36	743		18	1,177
NDC-1-1				animals-			none
SDC-1-1		18					18
NDC-2-1		36					36
SDC-2-1		108		271			379
NDC-4-1				18			18
NDC-7-1				animals-			none
SDC-4-1		54		290			344
SDC-7-1		36		290			326
DC-2	217	2,501	562	707		36	4,023
NDC-. 25-1	36	5,547	743	870	54	108	7,378
SDC-. 25-1	126	960	235	598			1,919
NDC-. 5-2	36	870	489	562		54	2,011
SDC-. 5-2	90	1,015	54	326		36	1,521
NDC-1-2		13	181.	72		54	325
SDC-1-2	90	2,338	344	634	18		3,424
NDC-2-2	54	308	18	308			688
SDC-2-2	90	362	90	199		54	795
NDC-4-2		36					36
NDC-7-2				no data-			ND
NDC-7-3		416	543	362	163	18	1,502
SDC-4-2	36	362	126	217		36	777
SDC-7-2	18	217	72	271			578
SDC-7-3	18	145	108	181	18		470
DC-3		489	72	217			778
NDC-. 5-3	126	1,649	797	580	54	18	3,224
SDC-. 5-3	126	253	90	108	54		631
NDC-2-3	145	2,465	362	580	18	36	3,606
CDC-2-3	72	2,810	852	543			4,277
DC-4	471	7,143	489	380	36	54	8,573
NDC-1-3	181	471	235	36		36	959
SDC-1-3	688	3,879	380	181			5,128
NDC-4-3	36	471	18	36	1.8		579
NDC-7-4	489	598	108	199		18	1,412
SDC-4-3	398	2,628	2,755	507	36	163	6,487
SDC-7-4	525	416	36	54			1,031
DC-5	4,804	5,892	398	72			11,166
NDC-2-4	7,306	12,890	489	235			20,920
SDC-2-4	1,214	8,104	3,390	398	36	90	13,232
NDC-7-5	1,087	3,571	380	453	54		5,545
SDC-7-5	235	8,321	1,559	598	108	54	10,875
SDC-4-4	1,450	6,309	2,846	90	18	18	10,731
DC-6	6,544	7,578	1,178	72			15,372
NDC-4-4	5,765	11,331	1,323	72			18,491

Most of the interpretation of the earlier mafor surveys is presented in Section 2 below, along with information at louer taxonomic levels. Inspection of the data indicates that while variations do occur among the samples from one station in different seasons, and amons; those from adjacent stations in any one survey, there is considerable similaifty among samples from any one month and depth zone. Statistical tests of these observations will be forthcoming.

The stations nearest shore $(0-8 \mathrm{~m})$ underwent similar changes for the two successive years: April samples had fewes; animals, July samples were richest in Chironomidae, and september and November samples yielded more oligochaeta than did those in other months.

In the depth interval $3 \cdots 6$, Amphipoda were more numerous in July and September than in April or November. In agreement: with observations on 10 Juiy 1970, data given in Part IX, stations in che cencer of the survey area tended to have larger densities of benthos than those in the north of the survey area (see stations $D C-4, N D C-1-3$, and $S D C-1-3$). In addition, stetions SDC-7-3, SDC-7-4, and NDC-1-3 each had in excess of 20,000 oligochaetes per m^{2} on one occasion, indicating local anc perhaps tempcraty degradation of the sedimentary environment.

The observation in Part IX that the shore zone is generally poor in benthic animals is substantiated by the subsequent data. As noted above, Olig.w ochaeta tend to be locally abundant in the autumn. However, at no time did Amphipoda or Sphaeriidae occur in large populations at depths less than 8 meters, or within a quarter mile of the beach. The Chironomidae are most abundant in this shallow inshore zone and produce the July maximum there. The July chironomid maximum is due to numerous species which are small enough to escape through the screen during washing, except in summer when they en-
large just before they emerge into adult midges.
Data from two short surveys of May and June 1972 are given in Tables 45 and 46. These data indicate that the increase in Amphipoda, which was noted between the April and July major surveys, occurs between early May and early June. Increases in chironomids and oligochaetes also occur in that month-long period.

These tables, in conjunction with the data from the seasonal surveys, have been used to define depth zones wherein simultaneous changes in sediment composition and composition of the benthos population commonly occur. Abrupt increases in Amphipoda, Sphaeriidae and Oligochaeta occur between 7 and 13 meters, and in Amphipoda and Oligochaeta, again between 22 and 25 meters. These changes correspond to changes in the character of the sediments: in less than 7 meters, coarse and medium sands predominate; between 8 and 22 meters, fine sands with some silt are most frequent; and between 22 and 25 meters, gelatinous silt and clay generally become dominant. Since the zones of changes are somewhat smeared, a certain degree of arbitrary selection has been used and depths of 8,16 , and 24 meters have been chosen as boundaries between zones.

Results of short, monthly benthos surveys for May, 1972.

 *Surf zone 100 yards south of harbor entrance, Cook Piant.

$$
\underset{\sim}{\text { and }} \text { 거N } 1
$$

Section 2. Community structure

Prior to the present study, very little information was available about the benthos of shallow sandy bottoms of the Great Lakes. Data on the relative abundance and identity of individual species in this part of Lake Michigan did not exist. Therefore, the task of fundamental description of the benthic commaifty structure hed to be added to the central goal of ordinary population assessment. In addition to the simple listing of the species found, it is necessary to attach sigifficance to the species composition of the commanity, and to the ways in which the comnnity varies within and among depth rones. Species level information can then provide a supplementary means of setacting changes in the benthos, one which may be much more sensitive than simple abundances, awd which frequently reveals more about the factors which cause observed changes. We tave, therefore, irvested great efforts fr obtaining spectes frvei data, as well as in sorting and counting the num bers of animals.

Figure 47 shows the survey area with station locations and depth contours. The stathors considered in this setion are the regular systenat? survey stailions. They range in depth from about 4 to 46 meters, and su trc. de the zone of strongest thermal stratification as it intersects the side of the lake. Sediment types here are graded from coarse sand in the shailow nearshore area to gelatinous silty clay in the deeper reaches. Divers have observed, however, that sediment types do not change smoothly with increasing depth. Patches of silt and dark organic ooze occur in zones which are predominantiy clean fine sand.

The existence of gradients and sedimentary heterogeneities should be reflected in the abundance and species composition of the benthos. In this section we describe seasonal variations in benthos species composition, and
then show how the benthic community structure changes with the depth gradient. Since these samples were not replicated at single stations, local sedimentary heterogeneity must be examined in the context of the later sampling design.

Methods

Our standard procedure since the beginning of the benthos surveys has been to collect a single sample, composed of one or two ponar grab hauls, from each station. Each grab haul has a surface area of about $0.06 \mathrm{~m}^{2}$, so that a factor of 18.13 is used to convert data to the conventional base of one square meter. The samples are washed in a funnel-shaped elutriation device which allows rinsing of the animals and lighter sediments over onto a 0.5 mm screen. Residues of sand and coarser materials are discarded. Particles and animals smaller than 0.5 mm in their least dimension are partially lost through the screen, but smaller animals are often retained, while active and elastic oligochaetes somewhat larger than this may escape. The residue on the screen is washed into a sample bottle and preserved with buffered formalin. In the laboratory, samples are sorted under strong light against a black background, usually without magnification. 0ligochaeta and smaller Chironomidae are mounted on slides and identified at high magnification. Mr. D. Klemm of the University of Michigan Museum of Zoology identified representative leeches, but available taxonomic keys were used to identify the other animals.

Species diversity indices for July 1970 data were calculated by the method of Shannon and Weaver ${ }^{1}$:

$$
d=-\Sigma\left(n_{i} / n\right) \log _{2} n_{i} / n
$$

[^4]where n_{i} / n is the percent of the population represented by each species in the population.

Results

In order to present species data meaningfully, we must divide them into several categories. First is the group of species which have been picked from sieve residues routinely since the first survey (Table 47). Second is a group of species which can be picked from samples taken by standard procedures, but which for one reason or another have not been picked consistently (Table 48a). Third come those animals which occur in the resicues, but are not strictly benthic, i. e. they were captured in midwater as the grab descended (Table 48b). Finally, there are some benthos which are small enough to escape very easily through the waibing screen, but which are frequently seen in the residue (Table 48c). Beginning with the samples taken in August 1972, all animals in Table 48a will be picked consistently. Some of these, such as the Naididae and Platyhelminthes, are common in the samples, but others have not been seen in benthos samples simply because they are so rare. Species diversity indices are based only on species listed in Table 47.

Many species remain to be identified, but progress has been made since Part IX. Pisidizm species are still not distinguished, and the species in Gastropoda genera have not been named. A number of Chironomidae have been reared, but not all reared specimens have been examined. The abbreviations "cf" and "-gr." in Chironomidae names refer to the uncertainty of larvalstage identifications. The former means "near," and is used when a distinctive larva is known to correspond to a certain adult species. Since more than

Species	$\begin{array}{r} \mathrm{Jul}, \\ \mathrm{n}= \\ \overline{\mathrm{x}} / \mathrm{m}^{2} \\ \hline \end{array}$	freq.	$\begin{array}{r} \text { Nov, } \\ \mathrm{n}^{2} \\ \mathrm{x} / \mathrm{m}^{2} \\ \hline \end{array}$	freq.	$\begin{array}{r} \text { Apr }, \\ \mathrm{n}^{2}= \\ \overline{\mathrm{x}} / \mathrm{m}^{2} \\ \hline \end{array}$	freg.	$\begin{array}{r} \mathrm{Jul}, \\ \overline{\mathrm{n}}= \\ \overline{\mathrm{x}} / \mathrm{m}^{2} \\ \hline \end{array}$	$\begin{aligned} & 971 \\ & 8 \\ & \text { freq. } \end{aligned}$
Amphipoda								
Pontoporeia affinis	1762.0	0.84	1344.0	0.94	1232.0	0.70	2560.0	0.87
Oligochaeta Lumbriculidae								
Stylodrilus heringianus	522.0	0.60	376.0	0.63	806.0	0.60	784.0	0.42
Oligochaeta Tubificidae								
Limnodrilus hoffmeisteri ${ }^{1}$	267.0	0.80	337.0	0.77	163.0	0.68	1060.0	0.87
L. angustipenis ${ }^{1}$	12.0	0.28	29.0	0.17	19.0	0.28	94.0	0.37
L. cervix ${ }^{1}$	8.0	0.20	181.0	0.20	4.0	0.08	12.0	0.13
L. profundicola ${ }^{1}$	3.0	0.20	2.0	0.03	3.0	0.15	37.0	0.34
L. claparedeanus ${ }^{1}$	-	-	-	-	0.5	0.03	5.0	0.08
Potamothrix moldaviensis ${ }^{1}$	27.0	0.36	101.0	0.69	28.0	0.45	185.0	0.71
P. vejdovskyi	0.7	0.04	74.0	0.29	5.0	0.08	63.0	0.34
Feloscolex freyi ${ }^{1}$	31.0	0.48	31.0	0.31	3.0	0.10	134.0	0.45
P. variegatus	0.4	0.04	-	-	-	- '	-	-
P. multisetosus	\cdots	-	0.5	0.06	-	-	-	-
Tubifex tubifex ${ }^{2}$	-	-	3.0	0.06	19.0	0.18	44.0	0.21
Aulodrilus americanue	3.0	0.08	12.0	0.11	-	-	2.0	0.03
A. piuriseta	-	-	70.0	0.06	\cdots	-	2.0	0.03
immatures w/o hair sebae	218.0	0.80	± 939.0	0.77	587.6	0.88	595.0	0.89
immatures w/hair setae	6.0	0.08	478.0	0.40	48.0	0.25	69.0	0.21

Table 47 cont'd.
${ }^{2}$ Species whose immatures are combined in the category "immatures w/hair setae." Ilyodrilus templetoni may also contribute to this group (see Table 2-2a).

Table 48. Other invertehrates fam benthos samper,
a) Spectes which wert no ploked quantitat esy from Poner erab anntea before July, 1971.

Gammaris sp. (Amplipoda)

Trichoptere sp.
Naidiae in July, 1971 sumples Trict

Unoinais unemata 28.0 0.13
Nais pardalis $20.8 \quad 9.21$
mate op. \therefore 多 6
Enistina Zongiseta $\quad 3.5$ Os
Hydra sp. (Ccelerteraca)
Plathelminthes $8 p$
Eumucrous lome Zhatus fladocera
Hydracalina so.
 samples

Misis reticta (ses park 5, wolow
Limnoeazanus maorwous copepones
Leptozora kindtri (alacocens)
 0.5 mm -mesh sieve.

Nematoda spp.
Harnacticoldea sp. (Copepoda)
Ostzacoda spp.
one species has frequently been reared from a single larval type, the identification cannot be considered positive. The latter refers to a larval type which is known to correspond to several adult species. Different larval types of the genus Chironomus are taken here to indicate distinct adult species when they occur together. The system of generic nomenclature is that proposed by Hamilton, Saether, and Oliver.

The species Chironomus attenuatus and C. anthracinus have been reared from anthracinus -gr. larvae. Paracladopelma nereis was identified from reared adults. Procladius culiciformis has been identified from reared larvae, but it is possible that other species of this genus are also numerous, for larval differences are minor. Polypedilum, Cryptochironomus, Tanytarsini, and other Chironomus species have been reared, but not yet identified.

The relative abundances over the entire survey for dominant taxa are given in Table 49. In July 1970 and 1971, and in April 1971, Pontoporeia was the most abundant animal. This species mates in midwinter, but females carry their young until late May or early June, at least at depths less than 22 meters. Just after the young are released, the population reaches a maximum. Deeper than 22 meters, seasonal differences in size and maturity of Pontoporeia become less distinct, as do differences in abundance.

The oligochaete Stylodrilus heringianus was most abundant in April. The proportion of mature individuals was about 60% in April and July 1971, but less than 40% in November 1970. Perhaps these worms have an annual average life cycle in which adults reproduce in summer and decline in autumn, while the winter is spent in growth and maturation. The cycle is not distinct, however, because large portions of both mature and immature worms are always present. The strongest feature of the seasonal changes is the population

[^5]Table 49. Contribution of dominant taxs to the benthos community.

	\% of Total Fauna			
	Ju1 1970	Nov 1970	Apr 1971	Jul 1971
Pontopomeia affinie	49.9	22.8	33.8	37.6
St.onthue neringionus	14.8	6.7	22.1	11.5
Truafixidec	16.3	$+3.3$	24.2	33.8
, H haerion ritudum	4.2	2.4	2.9	2.0
Fierd . . spp.	8.6	17.2	12.2	9.0
Chironomidae	4.?	6.8	3.6	5.2
Remeincer	1.5	0.8	1.2	0.9
Total $\min ^{2}$	3528	5906	3641	6810

minimum in November. Tubificidae are composed predominantly of Limnodrilus hoffmeisteri, with moderate numbers of Potamothrix moldoviensis, P. vejdovskyi, and Peloscolex freyi. L. hoffmeisteri is cosmopolitan, and the other three species are associated with moderate enrichment, such as occurs in parts of Green Bay and the central basin of Lake Erie. This species association indicates some enrichment, but not serious pollution of the survey area. On the other hand, a few samples have contained large numbers of Tubificidae ($>10,000 / \mathrm{m}^{2}$) with important proportions of Limnodmilus cervix, and Tubifex tubifex. The stations at which such samples were taken did not have such high densities in other surveys, so it appears that local pockets of highly organic mud occur irregularly over middle depths in the survey area. Examples are SDC-7-3 in November 1970; SDC-7-4 and DC-4 in July 1971; and, to a lesser degree, NDC-2-3 in November 1970.

Sphaerium nitidum is a cold stenothermal species which is almost completely restricted to depths between 18 and 33 meters. Its numbers vary little from season to season.

Pisidium species as a group were low in relative and absolute abundance in the two Julys and highest in November 1970. This evidently represents autumn reproduction. Yet it may be attributable to only one or two of the more numerous Pisidium species.

Chironomidae are clearly the most seasonal of the major taxa. Some species occur in much larger quantities, or exclusively, in July: Paracladopelma nereis and Parachironomus cf. demeijerei, small species restricted to depths less than 8 meters; Polypedilum cf. scalaenum; and Paracladopelma obscura. These species are emerging during July samples, so those which have already left the lake are never seen in major surveys. Other species evidently emerge after April, and are present mainly in November and April samples: Monodia-
mesa cf. bathyphila and Pothastia cf. Iongimanns. A few larger species occur all year, either because the smaller instars are retained in the sieve, or because the small stages are passed in a very short time, and the length of the fourth and last larval instar constitstan of an antmal's lifespan. These species emerge from July to October: Chironomus spp., Cryptochironomus sp. 2, and Procladius spp.

The Chironomidae, along with Tublfictsae and risiaiun, were much wore numerous in July 1971 than in 3 uly 990 (able 50 , and Egares 42 and 4). The increases in Tubificidae were spread evenly over the spectes. Changes In Chironomidae could be partly due to later eiming of the survey date in the emergence pericd of some species, but the tacieases in Chivinomas and Tanytarsini species probatiy represent real changes in population size, Foooladius, in contrast, was less numpous in fuy :971. The kthds of spectes which increased as a group fndicate that a generally benoficial increase in the food supply to benthos occurred in July 1972.

The most numerous genere of Charonoricae are interesingly, those characteristic of typical eutrophic lakes: Chinoncmis, Cryptochironomus, Polypedilum, and Proctadius. Thest comocur whth smail sumers ef forms generally found in oligotrophic lakes: Tanytaraini, Hoterotmesorladius, Monodiam mesa, Potthastia, and Paracladopelma cf. obscura. Genera of mesotrophic lakes (Sergentia/Phaenopsectra, Stictochironomus) are abseat, as are species associated with aquatic macrophytes. Two species appear to be especially adapted to frequently disturbed, shallow, sandy bottoms, and have been found rarely or never in North America outside of the Great Lakes: Paracladopelma nereis and Parachironomus cf. demeijerei.

Other taxa account for less than 1.5% of the fauna in all seasons. Because of their size, Sphaerium striatinum, the Gastropoda, and Helobdella

(2) $\bar{\square}$ n
stagnalis would appear more important if the data were in biomass form.
The species data support a subdivision of the depth gradient into a series of zones. Depths less than 8 meters (Zone " 0 ") include most of the two small, unusual chironomids and are virtually devoid of Sphaeriidae and Pontoporeia. Between 8 and 16 meters (Zone " 1 "), Pontoporeia, Tubificidae, and Pisidium become moderately abundant, and Peloscolex freyi, Limnodrilus angustipenis, Cryptochironomus sp. 2, Chironomus spp., and Polypedilum cf. scalaenum occur mainly in this zone. Between 16 and 24 meters (Zone " 2 "), Pontoporeia and Pisidium reach high abundances, Stylodrilus becomes abundant, and Sphaerium nitidum occurs almost exclusively. Deeper than 24 meters (Zone "3"), a balance of Pontoporeia, StyZodriZus, Tubificidae, Pisidium, and probably Heterotrissocladius cf. subpilosus becomes established, the typical benthos of the Great Lakes' profundal zones.

This pattern of zonation is supported also by seasonal changes in Pontoporeia populations (Figure 44).

These distributions are represented in Figures 42 and 43, and Tables 50 through 52. It was on this basis, as well as on the analogous changes in total numbers of benthos, that the stratification of the survey by depth was designed.

Species diversities for July 1970 samples are shown in Figure 45. They show a tendency toward moderately low, consistent diversities near shore, but highly variable diversities farther out. The cases in which diversities were very low offshore were due to very large proportions of Pontoporeia in the samples. This suggests that, in the Great Lakes, the usual relationship between low diversity and degredation of the benthic environment is not always valid. Near shore, low diversities are due to the very few species which occur there. The equable distribution of individuals among those species coun-

Table 50. Mean numbers per m^{2} by depin ones for dondrant species for July, 1970.

Species	$0-8 m$	8-16m	16-24m	$\geq 24 \mathrm{~m}$
Pontoporeia xffinis	2	704	3,455	4,670
Stuzodritwe heringianus	0	28	1,255	3. 420
Limmodritus hoffmeister (mature)	0	210	506	230
Limbodyitue ancustromens mature	9	3	9	29
Pelosoolex freyz (macura)	\%	50	35	0
Sphowrium nitidur.	\%	2	426	122
Pisidium spp.	\therefore	$2 \% 2$	620	431
Chironomus anthracinus-gr:	5	2	36	13
Cryptochironomus sp. 2	3.	71	5	U
Paraciadopeima nereie	15	2	0	5
Parachiroromus cf. demeijere?	24	2	1	0
Polypedilum cf. scalaenum	0	17	1	0

Table 51. Mean numbers per m^{2} by depth zones for dominant species for
November, 1970.

Table 52. Mean numbers per m^{2} by deoth zor: for dominant species for

Specites	9-8m	8-16m	16-24m	$\geq 24 \mathrm{~m}$
Pont poreia affimis	20	53	1,054	6,756
Sozodrizu heringionus	4	11	892	3,919
Limnctriius hoffmeistomi (msture)	22	79	284	32.7
Limoodr ins angustiperis (mature)	5	34	23	15
Peloscolec freyi (mature)	4	2	3	0
Sphaerium ritidum	0	2	261	11.6
Piscutiur spp.	54	238	58.1.	1,373
vinironomus anthracinus-3x.	0	9	22	0
Cmpleatiounimus sp. 2	17	107	12	0
Parachadonelma nereis	0	0	0	0
Eaiuntrancmue ci dumuiderei	0	0	0	0
Potopzaitiom of. sculaerum	0	0	0	0

Figure 44. Percentage of Pontoporeia affinis in several size and sex conditions in bottom grab samples from Cook Plant benthos surveys. Each set of axes is based on several combined samples from one survey within the depth zones defined in the text. In the lower left corner the scales and meanings of the axes are shown. The vertical axes are \% of total counted in each zone and month. The horizontal axes are size (immatures only, left side of vertical cross-line) and sexual condition (right side of vertical cross-line). The bars of the histograms are for the classes immatures $<3 \mathrm{~mm}, 3-5 \mathrm{~mm}, 5-7 \mathrm{~mm}$, and $>7 \mathrm{~mm}$, and for gravid females ($\boldsymbol{f} \mathrm{g}$), spent females ($\boldsymbol{f} \mathrm{s}$), and males ($\sigma^{\text {f }}$). The downward-pointing arrows indicate that $>0 \%$ and $\leq 2 \%$ were found in that class in the corresponding samples.

$\underset{\sim}{N}$
2.4

	1.1	0.9	2.4
2.7			

teracts the low number of species to some extent, and increases the index slightly. There is no support for a conclusion that low nearshore diversities are the result of a degraded environment, when the species which occur there are considered. Since the interpretatur of species diversicy values in this environment is complex, we belleve that the use of such indices to detect changes due to plant effects wili be difficult, and lass reliable than simpler iaformation about the relative and absolute abundances of single species.

Section 3. Statistical analysis and the stratified random survey plan for benthos, July 1972

If solid proof of ecological change or lack of it in the Cook Plant survey area is to be achieved, adherence to the prerequisites and rules for analysis and interpretation of statistics must be maintained though several complete surveys. The primary goal of the analyses is to develop techniques which will discriminate among benthos communities and populations with the greatest possible sensitivity, and which will make full use of all information that is available. Preliminary data are used mainly to define zones of similar species composition and abundances. Separate analyses within these zones can determine whether or not they are valid. If so, the capacity to detect change will be improved, because the variability will be less at any one time among samples within smaller, more homogeneous biological zones. A sampling plan can then be adopted which meets the design requirements for analysis. The data can then be examined for consistency with the rules concerning frequency distributions and interrelationships among moments of the distribution, and their form adjusted by transformations as necessary. When all statistical prerequisites or assumptions are met, differences among zones within regions, the same zones in different regions, and the same zones in different seasons, or before and after plant operations, can be tested. Levels of statistical confidence about the reality of apparent changes can be provided.

The data presented in Section 2 show that changes in species and abundances occur at approximate depth contours of 8,16 , and 24 meters, and between 30 and 40 meters. This evidence has not been statistically tested, but the sharp discontinuities in tabular data make such conclusions almost foregone. Depth contours, or lines parallel to shore which approximated them
were used to stratify the survey area into faunal zones. To test whether differences exdsted between the so-called control areas, north and south of the plant site, and the region directly to the front of the plant itself, three regions were arbitrarily defined. One, called "D," is centered on the plant itself, and extends one mile along shore in each direction. The other two are between 5 and 7 miles from the plant; the north region is called " N " and the south region, "S." Each region was stratified by depth as outlined above into the following zones: "0" - beach to 8 m ; "1" - 8 to 16 m ; "2" 16 to 24 m ; and, " 3 " - 24 to 35 m . Three random sampling sites are chosen in each of the 12 zones. This is done by defining square areas $100^{\prime} \mathrm{x} 100^{\prime}$ In zones 0 and 1 , and $200^{\prime} \times 200^{\prime}$ in zones 2 and 3 . It is assumed that the ship has equal likelihood of being anywhere within the square when the captain is asked to stop at the center of it. The boat drifts somewhat during each station due to wind and currents, and it is deemed reasonable that successive casts are randomly located within the sampling site (square). The navigational charts we use are scaled so that the size of an ordinary pencil dot is almost as large as a $100^{\prime} \times 100^{\prime}$ square. Each zone is divided into appropriately sized squares on a coordinate system, and two coordinates are obtained for each sampling site from a table of random numbers. Figure 46 illustrates the pattern of zones and stations. At each sampling site in zone 0 , five full-sized ponar grab ($0.05 \mathrm{~m}^{2}$) casts are made. Similarly, three modified ponar grab $\left(0.017 \mathrm{~m}^{2}\right)$ casts are made at each site in zones 1 , 2 , and 3. The different numbers and sizes of samples are designed to reduce the variance resulting from low densities of animals and patchy patterns of dispersion in the shallowest area. Offshore, faunal densities are higher, and limitations on the time available to sort the samples required us to reduce the number and surface area of samples. To speed up the analysis, we have

Figure 46. Station locations in the systematic-random benthos survey of July 1972. Regions are indicated as N (north control), D (in front of Cook Plant), and S (south control). Left numeral is the zone number; right number is the sample number. See legend of Figure 42 for zone depth limits. Stations were chosen at random within zones. The bases of the regions are marked off at the shoreline.
bypassed the double-randomization aspects of the design and assumed that all individual samples from a given square zone were from random casts within the square zone. We intend to test this assumption at a more detailed level in the near future.

The first data from this sampling design were obtained in July 1972. They are presented as zone means for major and some minor taxa in Figures 47 through 58. Standard deviations of the observations are illustrated. It should be noted that these deviations make no assumptions about the distributions of the number of animals per sample, and cannot be used to test for the statistical significance of differences among means. They simply illustrate the variability of samples within zones.

Except for a decline in zone $N-2(16-24 \mathrm{~m})$, total animals (Fig. 47) increased in successive zones from shore outward. The standard deviations were approximately the same as the means in each region for zones 0,1 , and 2, but they were much reduced in zones 3 . The same basic pattern was true for Pontoporeia, StyZodrilus, Tubificidae, and Pisidium. Pontoporeia usually had lower proportional standard deviations, and the standard deviations in zones 3 were not reduced as markedly for the Oligochaeta and Pisidium. Pontoporeia was relatively abundant in zone $N-2$, unlike total animals and the other three groups mentioned.

Less abundant taxa had other patterns of distribution. Sphaerium striatinum was most abundant in zones $1(8-16 \mathrm{~m})$ and $2(16-24 \mathrm{~m})$, but was weakly represented in the north region. Sphaerium nitidum was absent from zones 0 and 1 , and was most abundant overall in zones 3. Its relative abundances in zones 2 and 3 were different in different regions, however. The Chironomidae larvae, with the exceptions of Procladius and Monodiomesa (not shown and never abundant), reached highest densities in zones 0 and 1 . Only

 the shoreline, and the zones extend eut in whorizoncis plane fastances

 tions in each zone wish assuciated standsd dewhatona pa God plant

Chironomus anthracinus-gr. larvae showed a stronger development in zone 0 . The distribution of C. anthracinus-gr. In July 1972 was very different from that of July 1970, but not unlike the July 1971 distribution. The small Chironomini which characterize the beach zone (0) were not distinguished below this tribal level, and so were combined with Polypedilium cf. scalaenum. Since the last is most abundant at depths from 8 to 16 m , this combination of taxa obscured a clear distinction between zones 0 and 1.

In all essentials the patterns of distribution evident from the system-atic-random survey plan are the same as those from the former strictly systematic plan. The more recent data, however, illustrate very clearly that the three regions are different; this was not as clear from the earlier plan. The north region is poorer in all taxa. The central region (D) is richer in Pontoporeia, Sphaeriidae, and Chironomus anthracinus-gr. than the south region, but poorer in Tubificidae, especially in zones $0-2$. In zones 3, regional differences are somewhat less. Absolute abundances overall were similar to July 1971, but greater than those in July 1970.

Transformation of the data

As a general rule, benthos sample sizes tend to be contagiously dispersed; i.e., most samples have relatively few animals, but a few have very many. A rough test of this general rule is made by comparing the size of mean and variance for replicates. If the variance is much larger than the mean, contagious dispersion is assumed. Comparison of means and variances within zones for the counts per sample (raw data) showed that variances were almost always much higher than the mean. (Note: The squares of the standard deviations in Figures 47 through 58 are not the same as sample variances because data in the figures are converted to numbers per square meter.)

Elliott ${ }^{3}$ suggests that when the variances are larger than the means the appropriate transformation is the logarithm of the counts. If there are zero counts a constant of one should be added to all counts before taking the logarithm. Our sample surface areas differed between zones " 0 " and other zones, so it was necessary to convert the raw data to a common areal basis before performing statistics. Since benthos data are commonly listed in that form, a basis of numbers per square meter was chosen. The transformation formula is:

$$
\begin{aligned}
y & =\log _{10}(x+57.4) \\
\text { where } x & =\text { density in numbers per } m^{2} \\
y & =\text { transformed density }
\end{aligned}
$$

This transformation eliminated the correlation which existed between means and variances. The discussion on "Normal distributicn of data" which follows provides evidence that the transformed densitfes also follow a normal distribution for several important mafor taxa. To this extent, then, it is a successful transformation.

Normal Distribution of Data

If sets of data are compared by use of the "t"-test, analysis of variance, or other common tests for differences between populations, then all sets should have a normal frequency distribution, i. e., one which approximates a symmetrical, bell-shaped curve. To see such a distribution, one should have at least 50 observations, but the most we had in any single zone was 15 . Zones had very different means, so before observations from different zones were combined, the mean was adjusted to 0 by subtracting the zone mean from each observation within a zone. Then all zones were combined to produce a total of 126 observa-
3. Elliott, J. M. 1971. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwat. Biol. Assoc. Sci. Pub1. 25. 144 p.
tions. The logarithmically transformed data were used for this treatment. Frequency histograms were plotted with a class interval of 0.1 logarithmic units.

The results for several taxa are presented in Figures 59 through 61 . The curves approximate normal distributions sufficiently well for the purposes of our analysis. More detailed tests of the normality of these distributions will be given in a subsequent report.

One-way Analysis of Variance Between Zones

Tables 53 through 55 show the results of analysis of variance using the transformed data. Pontoporeia affinis (Table 53) had significantly different population means in all four zones in the north region. The means increased with depth. In the Cook Plant region ("D"), zones 1 and 2 were not significantly different, but all other pairs of zones were different. Again, abundance increased with the depth of the zone. In the south region, zones 2 and 3 were not significantly different, but all other pairs were different. This region also exhibited an increase in Pontoporeia abundance with increasing zone depth. The pattern of differences among zones is also illustrated in Figure 48 , which further shows that the south region has more Pontoporeia in zone 2, but less in zone 3 than the other two zones. The significance of these differences between regions has not been tested, however.

Total Chirnomidae (Table 54) demonstrated a similar pattern in all three regions. The first two zones, 0 and 1 , were always significantly different from the deeper zones, 2 and 3. Zone 0 differed from zone 1 only in the north region; otherwise, the two shallower zones were not different, nor were the two deeper zones. As in the case of total animals (next paragraph), however, more differences among zones would be evident if species with differing dis-

Figure 59. Sample size frequency distributions for total animals (a) and Pontoporeia affinis (b) in the systematic-random survey of July 1972. Sample sizes are given as logarithms of the numbers per m^{2}. Class interval is 0.1 logarithmic unit. The mean class is marked as \bar{x}. Vertical axes are numbers of samples within the corresponding size range. All zones and regions were combined by adjusting the means of each zone (see text) to produce 126 observations.

Figure 60. Sample size frequency distributions for total Oligochaeta (a) and Pisidium spp. (b) in the benthos survey of July 1972. See Figure 58 for legend.

TOTAL CHIRONOMTDAE

Figure 61. Sample size frequency distribution for total Chironomidae in the benthos survey of July 1972. See Figure 58 for legend.

Table 53. Comparisons of Pontoporeia affinis in pairs of zones within each region; July 1972 Cook Plant benthos survey. Letters in the first column refer to the region (N, D, S; see text), while numbers refer to depth zones ($0,1,2$, 3; see text). Means and variances are for the logarithmically transformed data (see text). In each comparison (done as part of ANOVA), the null hypothesis was that the population means of total animals in the two zones were equal. Under "Zone 1 " are comparisons between " 0 " and " 1 " zones, and under "Zone 2 " are comparisons between " 0 " and " 2 " zones, and between " 1 " and " 2 " zones, etc. If P $\leq .05$, the hypothesis was rejected. If $P>.05$, N.S. (not significant) was entered.

Zone	Mean	Variance	Comparisons (P)		
			Zone 1	Zone 2	Zone 3
N-0	1.87	. 03	<. 0001	<. 0001	<. 0001
$\mathrm{N}-1$	2.54	. 12		<. 0001	<. 0001
N-2	3.16	. 10			<. 0001
N-3	3.78	. 08			
D-0	1.80	. 01	<. 0001	<. 0001	<. 0001
D-1	2.84	. 24		N.S.	<.0001
D-2	3.12	. 35			<. 001
D-3	3.89	. 01			
S-0	1.82	. 01	<. 001	<. 0001	<. 0001
S-1	2.49	. 38		<. 0001	$<.0001$
S-2	3.44	. 23			N.S.
S-3	3.61	. 02			

Table 54. Comparisons of total Chironomidae in pairs of zones within each region; July 1972 Cook Plant benthos survey. Format as in Table 53.

Zone	Mean	Variance	Comparisons (P)		
			Zone 1	Zone 2	Zone 3
$\mathrm{N}-0$	2.82	. 04	<. 05	<.0001	<. 0001
N-1.	2.54	. 11		<. 01	$<.05$
N-2	2.18	. 05			N.S.
N-3	2.21	. 11			
D-0	2.85	. 35	N.S.	<. 001	<. 01
D-1	2.92	. 25		<. 001	<.01.
D-2	2.04	. 06			N.S.
D-3	2.25	. 12			
S-0	2.86	. 12	N.S.	$<.0001$	$<.0001$
S-1	3.09	. 14		<.0001	<. 0001
S-2	2.10	. 04			N.S.
S-3	2.04	. 10			

Table 55. Comparisons of total animals in pairs of zones within each region; July 1972 Cook Plant benthos survey. Format as in Table 53.

Zone	Mean	Variance	Comparisons (P)		
			Zone 1	Zone 2	Zone 3
$\mathrm{N}-\mathrm{O}$	2.92	. 05	<. 01	<. 01	<. 0001
N-1	3.27	. 16		N.S.	<. 0001
N-2	3.30	. 05			<. 0001
$\mathrm{N}-3$	4.10	. 07			
D-0	2.92	. 37	<. 01	<. 001	<. 0001
D-1	3.59	. 28		N.S.	<. 01
D-2	3.76	. 26			$<.05$
D-3	4.39	. 01			
S-0	3.07	. 19	<. 001	<. 0001	<. 0001
S-1	3.75	. 14		N.S.	<. 01
S-2	4.04	. 11			N.S.
S-3	4.30	. 01			

tributions were not combined into a larger taxonomic entity for analysis. Zones 0 and 1 differ in the composition of Chironomidae species.

Total animals (Table 55) were always significantly different in comparisons between the shallowest and deepest zones. There was no sigaificant difference between zones 1 and 2 in any region, however. In the south region, zones 2 and 3 were not significantly different. Since differences between zones i and 2 were significant for Pontoporeia and total Chironomidae, we conclude that valable information is lost when major taxa are combined in quatititative analysis of bentios. In this case, the loss of significance is probably due to the sudden decrease in Chironomidae at a depth of about 16 m , combined win relatively small corresponding increases in the abundances of other taxa.

Sumrary and Conclusions

A stratified random sampling plan was instituted in Jıly 1972. Strata were estabilshed by depth zones in a region in front of the plant and in control xegions to the north and south. Benthos were sorted to generfic levels or lower. Variances tere larger than the means, and generally correlated with them, for all zones, which necessitated transformation of the data prior to statistical analysis. A logarithmic transformation was applied, and was found to produce approximately normal frequency distributions for several taxonomic groupings, as well as eliminating correlations between means and variances. Some of the transformed data were subjected to one-way analysis of variance, and we found that significant differences in population sizes existed between depth zones within regions. This constituted strong support for the intuitive stratification plan, and lent confidence to our ability to detect differences among benthos populations by statistical methods. Ap-
parent differences between the same depth zones in different regions raised the problem of how to compare control and experimental regions when they differ prior to the "experiment." The statistical validity and persistence of apparent differences must be examined, and techniques developed to deal with them, if necessary.

Section 4. Mysis relicta

This relatively large (up to 3 cm long) "opposum shrimp" occurs occasionally in benthos samples. It is, however, an atypical benthic animal since during the day it remains near the surface of the sediments while at night it moves up into the plankton. Because of its very sensitive eyes and back-ward-darting escape reaction, similar to that of the crayfish, it is able to escape capture by bottom grab sampew better than endobenthic animals. Nysis relicta have been excluded from benthos analyses because data on this species from bottom grab samples are only minimal estimates. Yet its size, its semiplanktonic habits, and its reported sensitivity to thermal shock require that It be considered in the analysis of the environmental impact of the plant.

Data from poiar grab samples are presented in Table 56 . These shrimp are more abundant and most frequently captured at ihe three deepest stations in the survey. Most estimates of abundance were between 8 and 55 per m^{2}, and the maximum observed was 236 per m^{2}. Only one specimen occurred in a sample from less than 20 meters in depth. From these data, one would conclude that, at least from April to November, 4 fis rarely occurs near shore, and is not in serious danger of entrainment. Similar distributions have been observed by several methods in other populations and lakes during the summer period of thermal stratification. Information about this species in the literature, however, indicates that it spreads into the shallows in winter when no thermal barrier exists. Its absence from grab samples collected in shallow water could, then, be a result of its ability to avoid capture, combined with lower population densities there.

On 11 April 1972, an epibenthic sampling sled was used to collect Mysis relicta along a transect extending westward from the Cook Plant. The sled was towed parallel to the depth contours for varying time spans, stirring

Table 56. Mysis relicta in Ponar grab samples, Cook Plant.

Station	Depth (m)	Mysis relicta (No./m²)							
		Jul 70	Sep 70	Nov 70	Apr 71	Jul 71	Sep 71	Nov 71	Apr 72
NDC-. 25-1	13.3	8.4	-	-	-	-	-	-	-
NDC-1-3	21.1	-	8.4	-	-	- .	-	-	--
SDC-7-5	22.3	8.4	-	-	-	-	-	-	-
NDC-7-5	24.8	-	16.8	-	-	-	-	-	-
DC-5	25.1	-	25.2	-	-	-	-	-	-
NDC-2-4	26.0	-	-	8.4	-	-	18.2	18.2	-
SDC-4-4	32.2	-	33.6	16.8	36.3	18.2	-	-	18.2
DC-6	39.0	-	16.8	25.2	54.5	-	127.1	36.3	163.4
NDC-4-4	45.0	75.6	8.4	42.0	54.5	54.5	236.1	18.2	54.5

Table 57. Mysis relicta in epibenthic sled samples, Cook Plant, April 11, 1972. Water temperature measured with a YSI telethermometer, which had a cable 13.9 m long.

Depth (m)	Temp. $\mathrm{C}^{\mathrm{O}} \mathrm{C}$	$\begin{aligned} & \text { Tow Time } \\ & (\text { min. }) \\ & \hline \end{aligned}$	Mysis relicta (No. $/ \mathrm{min}$. of tow)
6.2	3.2 (Bottom)	5.0	0.2
6.2	3.2 (Bottom)	5.0	4.0
12.4	3.2 (Bottom)	1.0	109.0
24.8	2.2 (13.9 m)	1.0	255.0
24.8	2.0 (13.9 m)	1.0	39.0
24.8	2.0 (13.9 m)	1.0	127.0
24.8	2.0 (13.9 m)	1.0	120.0
24.8	2.0 (13.9 m)	2.3	246.5

the surficial sediments and entrapping whatever animals occurred in those layers, or fust above bottom. A net with 0.6 mm openings trailed behind the sled. Although such collections are at best only rough estimaces of population densities (avoidance was still possible at $11 / 2$ knots, the speed at which the sled was towed), large numbers of Mysis can be collected wherever they are present by extending the length of the tow.

With the sled, Mysis relicta was captured at a depth of 6.2 meters, the shallowest sampled just off the Cook Plant. Table 57 presents the results of all tows. Within the limitations of the sled for quantitative sampling, it appears that $M_{y} s i s$ is rare at the shallower depths.

In conclusion, it is clear that Mysis relicta does occur at depths which are shallow enough to expose it to entrainnent and heated effluent, at least in April. The bottom-sampling grab is not capable of detecting its presence, either because the shrimp is so rare, or because of its avoidance abilities. Quantitative estimates of its abundance are very difficult to obtain. Since it becomes planktonic at night, perhaps the best method of estimating its abundance is to collect it from the lakewater intake system during nocturnal hours. Its absence from the intake samples of January 1973 (see Section 5) implies that it is not entrained in large numbers, at least in the daytime.

Section 5. Benthos in Cook Plant cooling water, January 1973

Samples from the intake bay of the cooling water system were sampled qualitatively with a 非15 plankton net. These samples contained sand and benthic organisms in addition to plankton. The occurrence of benthos indicates that some of the benthos are semiplanktonic and that others are maintained in suspension sufficiently far above bottom to be taken into the cooling water duct. Moreover, certain species in the cooling water may have originated from the riprap around the intakes, rather than from the open sandy bottom.

Results

Intake Bay Sample (plankton net)

Amphipoda
Pontoporeia affinis - 7. Six were mature males, and one a mature female. The female and two males had begun to decompose before collection. Five males could be positively identified as of the subspecies "brevicornis," and the sixth could not be determined, due to absence of antennae. Prior to this sample, only one mature male had ever been seen in Cook Plant samples.

Oligochaeta

Tubificidae
Limnodrizus hoffmeisteri - 3. This is a common species throughout the survey area.

Peloscolex freyi - 1. This is a frequent species in benthos samples between 8 and 20 meters.

Immature Tubificidae without hair setae - 22 .
Ilyodrilus templetoni - 2. This is the first record of the species from the survey area. It has no definite indicative significance, but is associated with polluted shorelines in the Great Lakes. Immature Tubificidae with hair setae - 2 .

Insecta

Diptera

Chironomidae

Chironomus fluviatilis gioup - 14 in instar III. 11 had died before being sampled. This larva is common from 4 to 13 m . Cryptochironomus "sp. 2 type" .. 3 in instar IV. Frequent from 4 to 13 m .

Poiypedizum scaiaenum - 2 in instar II. Frequent from 8 to 16 m in summer.

Paracladopelma nereis - 1 in instar III. Common from the beach to 6 to 8 m .

Procladius sp. - 3 in instar III or IV. Abundant from 13 to 25 m in summer.

Other Feuna

Himudinea - 1. Not HeZobdella stagnalis. May be a new record for the Cook Plant. Even if not it may be considered a rare form in the benthos.

Hydra sp. - 9. Frequent in benthos samples.
Trichoptera sp. - 3. At least 2 instars represented. This order of insects is extremely rare in the survey area.

The DP samples described below．were collected by passing water，pumped from the intake forebay by a diaphragm pump，through a $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 10 ~ p l a n k t o n ~ n e t ~ s u s-~$ pended in a water filled barrel．

DP－3
Oligochaeta
Lumbruculiidae

Sylodrilus heringianus－1．Usually found deeper than 12 m ． Tubificidae

Immature Tubificidae without hair setae－ 6 ．
Chironomidae
Chironomus fluviatilis group－ 6 in instar III．Four died before being sampled．

Paracladopelma nereis－ 3 in instar III．
Procladius sp．－2．
Monodiconesa bathyphiza－ 1 in instar IV．
Other Fauna
Himudinea－2．Not H．stagnalis

DP－2
Amphipoda
Pontoporeia affinis－5．All male subspecies brevicornis．One had died before being sampled．

Oligochaeta
Tubificidae
Limnodrizus profundicola－ 1.
Immature Tubificidae without hair setae－ 11 ．

Immature Tubificidae with hair setae - 6 .
 Naididae
 Pigueteiza michiganensis - 1.
 Chironomidae
 Chironomus fluviatilis group - 2 in instar III.
 Procladius - 3 in instar III. One died before being sampled.
 Othe: Fauna
 Hirudinea-1. Not H. stagnaiis.
 Hydra sp. - 2.

Inferences

The absence of Pisidium inddcates that some winncwing does occur, and that only lighter species wili be taker into the coilng water. Fisidium generally occurs along with oligochaeta.

Several forms, due to their disproportionately high frequency, appear to be more liable to occur in the water above bottom than other benthos: Pontoporeia affinis males and ProcZadius and Chironomus fluviatilis-group larvae. The last of these three forms is the only surprising one, in that Tironomus larvae generally occur in the plankton only at night and just before pupation (late instar IV).

Several forms indicate the contribution of stable, hard bottoms to these suspended benthos: Hydra, Trichoptera and Hirudinea.

The frequency of P. affinis mature males shows that this must have been near the main reproductive period for the species, for mature males are very short-lived.

The fewer numbers of benthos in the "DP" (pumped) samples probably reflect a smaller volume of water sampled. No difference in depth of sampling
existed among the three samples. It is not possible from available data to calculate the density of benthos in the cooling water.

The frequency of individuals which had died prior to collection reflects either the harsh conditions existing in the intake ducts or the greater tendency of dead animals to be suspended in the alongshore currents. The rate of non-predatory mortality of benthos in the shore zone is unknown.

The presence of several elements of deeper-water benthos associations suggests that winter migrations or transport by upwellings or onshore currents were occurring during the sample period. These elements are Monodiamesa, Erocladius, and Stylodrilus.
A. 8 Studu of Local Fishes

This segment of the annual report has been published under separate cover as Part XII of this report series:

Studies of the fish population near the Donald C. Cook Nuclear Power Plant, 1972. March 1973. D. J. Jude, T. W. Bottrell, J. A. Dorr III, and T. J. Miller. 115 p.
A. 9 Support of Aerial Scanning

Under our contract with Indiana \& Michigan Power Company, we are obligated to "ground truth" in the surface water of Lake Michigan whenever the company decides that overflights carrying remote sensing systems are desirable. We are ready to provide this service on demand accompanied by adequate lead time.

A. 10 Study of Entrainment and Impingement

This is an addition to the ammal report, we study of the effect of entrainment and impingement is in the preliminary atages. Samples have been taken and are being analyzed bo detemine the vildity of the techniques we anticipa-e asing for this portion ar the stady, a very short descraption of what is nlanned is piow:un bow but thes omments stond bs regarazd as preliminary and changes should be antiopated as the progress of this work continues.
 ganisms in the open circulating couling system were intiated if fanuarv 1973. The investigations are directed towaris fie fozionge biological groups: benthos, fishes, phytoplankton wa expplakto. Atctupts inili be macie to ascer.. tain whether mechanical darage occurs ai to what totent it omurs. Determination of possibie mochancal dage duriag wad wity dirculation in the cooling system should provids the cportmaty to see what the resulcant thermal effects may be cace the Donald C. Coois Plant goes on line.

The entrainmenc studies on fish inciude adult, fuvenile, larvae and eggs. The existing travehing amechi can be expaczod to cause ahast 100% mortality of all fish large enough to be entrained on the $3 / 8^{\prime \prime}$ mesh of the screens. A comparable mesh to that on the waveling sureens has oeen installed in rash baskets which filter the wash water from the traveing screfn. Initially all fish caught in this basket will be examined but eventually subsampling of the collected fish may be necessary. Fish larvae and egg collections are to be made by filtering water provided by diaphragm pumps pumping from the intake bay in front of the traveljng soreens through ; plankton nets.

The zooplankton studies on entrainment have progressed further than oth-
er portions of this work to date. Additional information on zooplankton entrainment is found in this report in A.5. The general procedure of the zooplankton study is summarized below. Samples are collected by diaphragm pumps
 vertical distribution of zooplankton in the intake forebay. Distributional information thus derived will be used to determine sampling depths and locations for fish larvae and phytoplankton. Techniques to measure viability of zooplankton before and after entrainment are being tested.

Phytoplankton samples are collected by volumetric sampling of intake forebay water from the discharge of the diaphragm pumps. Viability of phytolankton before and after entrainment will be determined by C_{14} productivity comparisons.

Preliminary benthos samples have been taken and are reported in A. 7 section 5 of this report.

Sampling frequency investigations are planned once the open circulating water system commences to operate. Sampling frequencies will depend on the results of these investigations and on external requirements.

B. SURVEYS OF EXISTING WARM WATER PLUMES

During the past years we have spent a good deal of time and energy in conducting surveys of existing warm water discharge plumes from existing power generating stations. If desired, this program could be continued; we believe, however, that since we have already surveyed the plumes of all the major power stations on Lake Michigan, the emphasis and manpower should be transferred to the rising numbers of biological problems directly related to the Cook Plant and its environs. To that end, this section on surveys of existing warm water plumes is considered FINISHED.

C. THE ICE BARRIER AT THE COOK PLANT SITE

As in previous winters, studies of the ice barrier at the Cook Plant and in other areas were conducted by foot surveys and by aerial overflights. During the winter of 1972-1973 they were supplemented by fixed-position time lapse photographs.

Foot surveys of shore ice conditions at the Cook Plant were carried out on 20 December and 27 December 1972, and on 3 January, 6 January, 12 January, 19 January, 31 January, 15 February, and 22 February 1973. Aerial surveys of ice conditions along the southeastern shore of Lake Michigan were conducted on 27 February and 9 March 1973. The automatic time lapse monitoring camera was put into operation at the Cook Plant on 27 December 1972. The camera repeatedly photographed the same area of shoreline and nearshore water immediately to the north of the plant. With one breakdown, the camera operated
continuously from 27 December until breakup in March. During the camera breakdown, comparable pictures were taken by plant personnel, to whom our thanks are tendered.
D. EFFECTS OF EXISTING THERMAL DISCHARGES ON LOCAL ICE BARRIERS

Foot surveys of the plume areas of the Palisades and Campbell plants were made on 11 January. Our overflight of 27 February covered the plumes of the Bailly and Michigan City plants of NIPSCO and the Palisades and Campbell plants of Consumers Power. The overflight of 9 March covered the plume areas of Bailly and Michigan City.

A report of our 1972-1973 winter operations will be prepared when processing and analysis of photographs and field notes can be completed.
E. EFFECTS OF RADIOACTIVE WASTES IN THE AQUATIC ENVIRONMENT

E. 1 Garma Scan of Bottom Sediments

This section, which we early recognized as a desirable part of the Cook Plant preoperational survey program, has been taken over and in large part completed by Dr. Philip Plato of the University of Michigan School of Public Health. In view of his successful efforts, and in view of rising demands upon us for biological studies directly related to the Cook Plant and its environs, we consider that, so far as the Great Lakes Research Division program is concerned, this section of the work plan is FINISHED.
E. 2 Benthic animals as monitors for the accumulation of radioisotopic wastes in the biota of coastal Lake Michigan.
S. C. Mozley

Introduction

An experiment was designed to measure the relative reconcentration of certain metallic radionuclides by animals under conditions which approximated the natural environment. A variety of benthan macronvertebrates was exposed to five radionuclides so that the most sensitive monforing andmal for each could be distinguished.

Criteria for selection of the monitoring animal or animals should include:

1) abjlity to accumulate a radionuclide rom the aquecus phase against a concentration gradient of seve:al orders of magntade:
2) continuous abundance at the depth of the outfall in scutheastern Lake Michigan; and,
3) simplicity of collection and ease of concentracion from the sediments in large quantities.

Benthic macroinvertebrates were selected for this study because theit populations are more stable in time and space than woplankton and phytoplankton, and they move about much less than fish. No macrophytes have yet been found growing in the survey area. The only unexamined potential groups of monitoring organisms are the algae and animals which develop on hard substrata such as stones and wood.

A variety of radionuclides are released into the coolant water of nuclear electrical generating stations. Most of these are present in very minute quantities and probably represent no direct hazard to the benthos or benthophagic animals. Some however, are important to living cells and are accumulated from
the environment against a concentration gradient. Since only a few radionuclides can be studies efficiently at one time, those of known or suspected biological importance, which disappear only slowly from the environment by radioactive decay, and which are easy to distinguish quantitatively in mixtures were chosen for these experiments.

The Palisades Nuclear Power Plant of Consumer Power Company, a new plant of similar design to the Donald C. Cook Nuclear Power Plant, has been releasing radionuclides into Lake Michigan for about a year. The major components of its radioactive wastes and its release of the elements studied here are listed in Table 58. Isotopes of Hydrogen ($\mathrm{H}-3$), Cobalt (Co), Chromium (Cr), Xenon (Xe) and Iodine (I) were most abundant. Millicurie amounts of Cesium (Cs), Manganese (Mn) and Zinc (Zn) were also released, but only insignificant quantities of Barium (Ba) and Cerium (Ce) appeared in the effluent. Chromium and Iodine have relatively short-1ived isotopes, and tritium is generally assumed to be diluted rapidly by natural hydrogen in the water. Cobalt would have been a good object for study, but our supplies were exhausted in preliminary experiments. Sodium (Na) was released only initially from Palisades and amounts in the last three quarters of 1972 were negligible.

None of the beta-emitting isotopes were studied because of the necessity for more involved procedures and completely separate counting apparatus. The five radionuclides which were included in the present study are strong alphaemitters with distinct peak energies, and they can be counted simultaneously on a low resolution NaI crystal detector.

Methods and Materials

The experiment was conducted in triplicate in 3.851 , wide-mouthed glass jars with lake water which had been filtered during collection through a 非28

Table 58*. Palisades Nuclear Power Plant; 1972 itquid radioactive effluents.

Radioisotope	Millicuries			
	1st Qtr	2nd Otr	3rd Qtr	4th Qrr
Ce-144	0.0	0.058	0.005	0.0
Ba-133	0.0	0.0	0.0	0.0
Cs-137	0.017	1.52	11.8	0.99
Mn-54	4.2	2.8	31.1	53.8
2n-65	0.0	0.004	0.06	3.8

Other Mafor Isotopes

Cr-51	2.027	39.3	220.4	$2,512.7$
$\mathrm{Co}-57+58+60$	70.27	85.53	329.3	$2,745.3$
$\mathrm{Na}-24$	15.8	0.022	0.10	0.0
$\mathrm{I}-131+133$	69.1	42.73	97.6	37.03
$\mathrm{Xe}-135+133$	64.0	277.7	881.9	651.7
(H-3 excluded, very abundant)				
$\mathrm{Fe}-59$	0.26	0.94	12.0	53.8
$\mathrm{Zr}-95$	0.32	0.92	2.2	28.1
$\mathrm{Nb}-95$	0.07	1.8	2.3	33.8
$\mathrm{Sb}-124$	0.0	0.81	0.35	8.1

*

From Consumers Power Company Palisades Plant. Semiannual operations report. No. 4. July 1-December 31, 1972.
** For 1972 most abundant radionuclides were Cr-51 (2.8 Curies), Co-58 (3.2 Curies), H-3 (120 Curies), Xe-133 (1.8 Curies), and I-131 (0.2 Curies). 0.3 Curies of unidentified radioactive material was also released.
phytoplankton net. Sand with a grain-size range between 0.125 and 0.500 mm , and washed thoroughly in lake water, was added to each jar to the amount of 250 ml (settled wet volume). The jars were held in incubators in the dark with continuous aeration by bubblers. Incubator temperatures during the experiment varied between 11.0 and $15.7^{\circ} \mathrm{C}$.

Figure 62 shows the progression of a temperature rise which occurred during the experiment. The incubators were being maintained at a positive difference above outdoor temperatures. When unusually warm weather occurred during the experiment the incubator coolers malfunctioned and the internal temperatures rose. This rise may have caused part of the mortality of Sphaerium nitidum and Pontoporeia affinis during the experiment, as they prefer cooler habitats. It may also have interfered with normal uptake by other animals. Nevertheless, the change is well within the range of temperatures for a single summer day at the depth of the outfall (about 6 meters).

The radionuclides were provided by the suppliers as dissolved, inorganic ions in HCl . When they were added to lake water, the pH of the total was less than 1. Before the radioactive lake water could be added to the experimental jars, it was necessary to neutralize it. This required 350 milliequivalents of NaOH , and produced a salinity of $0.17 \mathrm{~g} / 1(=0 / 00)$ above the normal lake water. The effect of this slight increase in salinity on the experimental animals was not lethal, but may have reduced their tendency to accumulate inorganic ions from the water somewhat. Neutralization of the radioactive lake water occurred four hours before it was added to the jars, which may have allowed some of the radionuclides to form colloidal-sized or larger particles before they came in contact with the animals. Eleven kinds of benthic animals were included in the experiments (see Table 59). Some of these kinds included several species which cannot be dis-

Figure 62. Variation in incubator temperature during the experiment. Temperatures were measured when water samples were taken.

Table 59. Survival of animals during the experiment. (Conversion factor to 非/ m^{2}, for jar with diameter 15 cm : 56.5)

Taxon	\# at $t=0$	\# Counted	\# Shells Recovered
Lymnaea spp.	17 (x3)	17, 17, 15	0, 0, 2
Vazvata spp.	11, 11, 12	11, 10, 12	0, 1, 0
Sphaerium nitidum	23 (x3)	16, 14, 18	5, 7, 5
S. striatinum	1 (in A$)$	1 (from A)	0
Pisidium spp.	28 (x3)	23, 32, 34	6, 4, 6
Oligochaeta	50 (x3)	34, 39, 49	1 or more lost in sieving
Helobdella stagnazis	3 (x3)	1, 3, 3	
Chironomus anthracinus-gr.	1 (x3)	1 (x3)	
Tanytarsini sp.	50 (x3)	30, 8, 9	18 or more lost in sieving
Procladius spp.	2, 3, 3	2, 3, 3	
Pontoporeia affinis	12, 11, 11	6,7,6	
Mysis relicta	1, 1, 0	0	no trace remained

tinguished at the macroscopic leve1. Oligochaeta included Stylodrilue heringianus and several species of Tubificidae. Lymnaea, Valvata, Chiroromus anthra-cinus-group, and Procladius may have included two cr more species each. Pisidium included several species. The species Pontoporeia affinis was represented by a wide size range of specimens, including some as small as 3 mm long and one gravid female.

To compare the final radioactivity of sand and water with animals, all counts were adjusted to similar units of weight or volume. The common basis for animals was one gram, formalin wet weight. The weights of the animals of each kind in each jar were determined at the end of the experiment on a Met:tler balance to the nearest 0.1 mg . The radioactivity of a set of animais was then divided by its wet weight expressed in grams.

The numbers of each kind of animal introduced into the fars at the start, and the numbers recovered and measured at the end, are given in Table 59. The densities of animals in the jars at the start were within ranges of densities found in the lake. Prior to the experiment, the animals had been held for four months at $10 \pm 3^{\circ} \mathrm{C}$ in the dark in natural lake water and sediments.

The experiment lasted 14 days. When the radioactive lake water had been thoroughly mixed in the jars, 3 ml samples of water were drawn from the surface at time 0, time 14.5 hours, and 24 hours, then at one-day intervals thereafter. At time 14 days, the water and sand were poured through a 0.6 mm sieve and the entrapped animals were sorted by kind to be measured. The sieved sand was rinsed once in non-radioactive lake water and a 3 ml sample of sand was transferred to a counting dish. Interstitial water and radionuclides weakly adsorbed on sand, jars or animals were not measured.

Since sorting the animals took 2-3 hours for each container, and since they were all held at least one hour in non-radioactive lake water, they had
some chance to egest radioactive materials in their guts and exchange radionuclides with the water physiologically. This period was not long enough for complete egestion of materials in the gut or attainment of physiological equilibrium. It does represent however, the sort of delay which will be likely between collection and transferral to counting dishes of monitoring organisms in the field.

Animals, sand, and water were counted in 5 ml plastic petri dishes on a " 2×2 " NaI-Th detector connected to an ND-555, 128-channel analyzer. Counts In each channel were printed by a teletypewriter. Five channels around one peak for each radionuclide were summed, backgrounds were subtracted, counts in the peak region due to other radionuclides were subtracted by the method of simultaneous equations (derived from individual standard spectra with the same geometry and counting apparatus), and counts were corrected for radioactive decay to 19 February 1973 (day 0). Concentration ratios were calculated for sand and each kind of animal in each replicate by dividing counts per gram of animals or per milliliter of sand by the counts per milliliter in the water at the end of the experiment. Since the animals were mostly in more direct contact with the sand than the water, counts per gram for each animal were divided by the counts per milliliter for sand. Some sets of animals covered the bottom of the dish (e. g., Lymnaea, Sphaerium nitidum), while others were small enough to fit into a 0.5 ml drop or less. Accordingly, separate standards of radionuclides were counted with both 3 ml and 0.5 ml volumes for determination of the coefficients for the simultaneous equations. The analyzer was calibrated to linearity at $10 \mathrm{kev} / \mathrm{channel}$ at least once every four hours during measurements, and a fresh background spectrum was determined after each calibration. Background and samples of low radioactivity were counted for 1,000 seconds, but more radioactive samples were counted only long enough to
obtain clear definition of all the peaks on an oscilloscope screen, sometimes as briefly as 350 seconds. No attempt was made to determine absolute activities, since relative measures were sufficient.

Results

The counts determined $b y$ the method of siaultaneous equations in the peak region of each radionuclide are giver by sample, unadjusted for decay, In Table 60. Although the actual counting interval was 1,000 seconds (see methods section), the counts are reduced for compact presentation to the equivalent counts for 10 secends. Count totals less than 1 per 10 seconds (100 per 1,000 seconds, or 20 per chanse 1 per 1,000 seconds) were statistically unreliable. The limit of detectability fa the procedure was about $10-20$ total counts per 1,000 seconds. aphaemaratiutimum was present in only one replicate. The botton three rows of entries in che cable are the sizes of the samples which were actually counted, in milifiiters for sand and water, and in milligrams for animals. The weights of animals are those actually etrieved from the jars and counted.

Tavln 59 shows the relation petween the numbers pat into each jar and the number retrieved and counted for each kind of animal. Losses during the experiment were heaviest for Sphaemium nitidum (most shells recovered), Pontoporeia, Oligochaeta and Tanytarsini sp. The last two kinds of animals may have suffered some aquarium mortality, but the greatest lcss (as always) occurred during sieving -- some specimens were unavoidably discarded with the waste sand. Numbers of Pisidium increased during the experiment, presumably from the releasing of young clams (they are viviparus) which were already developing before the experiment began. A few Puntoporeia may have escaped through the sieve, as well, but this species generally suffers heavy mortality in culture,
Table 60. Measured radioactivity (counts/10 seconds), uncorrected for decay, of samples of water, sand, and animals at the end of the 14-day-long experiment, as well as the quantity of material in each sample. The initial (measured) radioactivity of the water ($t=0$) is also given. A, B, and C were experimental replicates.

	Ce-144			Ba-133			Cs-137			Mn-54			Zn-65			Vol or Wt^{1}		
	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Water ($\mathrm{t}=0$)	189	624	519	438	472	454	558	592	583	23	73	61	6	21	17	3	3	3
Water ($t=14$ days)	5	6	6	117	111	109	33	34	30	<1	<1	<1	<1	<1	<1	3	3	3
$\text { Sand }^{2}$	1,498	9,300	3,659	4,341	5,447	4,164	5,768	8,853	5,230	166	1,024	416	49	250	120	3	3	3
Lymnaea spp.	888	1,537	1,322	1,871	1,676	1,316	1,517	1,329	976	160	484	270	74	185	111	920	888	819
Valvata spp.	228	460	572	357	262	428	264	198	312	56	141	151	50	118	160	142	125	167
Sph. nitidum	264	406	489	631	355	692	455	402	385	39	88	97	24	60	56	655	574	703
Sph. striatinum	15			10			28			2			3			40		
Pisidium spp.	100	255	268	661	1,059	1,112	113	121	135	13	52	55	10	40	38	66	90	87
Empty shells spp.3	134	232	527	677	465	1,390	41	49	179	24	61	128	13	18	50	73	106	138
Oligochaeta spp.	171	378	332	252	237	276	298	267	258	17	44	37	7	19	19	147	185	224
Hel. stagnalis	2	5	2	2	1	2	3	4	3	<1	2	1	1	3	1	20	33	23
Ch. anthracinus-gr.	4	37	33	2	6	4	3	15	11	<1	4	3	<1	<1	<1	7	11	11
Tanytarsini sp.	315	208	261	74	18	19	220	49	58	28	18	20	4	3	3	28	7	7
Procladius spp.	1	3	5	1	1	1	2	1	2	<1	<1	1	~ 0	<1	<1	4	7	7
Pont. affinis	7	54	37	40	52	36	9	19	18	1	0	6	<1	1	<1	10	15'	5

${ }^{1}$ Volume expressed in $m 1$ for water and sand; weight expressed in $m g$ for animals.

[^6]especially when the temperature rises as high as it did in this experiment.
The five radionuclides decreased rapidly in the water during the experiment. Manganese -54 (Figure 63) underwent nearly constant exponential decline to the limits of detectability by day 5.

Zinc -65 (Figure 64) decreased steeply in the first 15 hours, then declined nearly exponentially from then until day 6 , when the exponential rate of decine decreased, and dropped below the limits of detectability by days $11-14$.

Cerium - 144 (Figure 65) decreased nearly exponentially to day 3 , then changed to a slower exponential rate of decrease. Only $1-3 \%$ of the original concentration remained at the end of the experiment.

Ninety percent of the original activity of $\mathrm{Mn}-54$ and $\mathrm{Ce}-144$ Left the weter by day 2 , and 90% of $2 n-65$ was gone by day 4 . The original activities of Ce-144, Ba-133, and $\mathrm{Cs}-137$ were over 10 times as high as that of $\mathrm{Mn}-54$ or $\mathrm{Zn}-$ 65.

Barium -133 (Figure 66) had the slowest exponential rate of decline overall, and the exponential rate vemained nearly constant after day 4. As a result of its slow removal from the water, about 25% of the original concentram tion remained on day 14.

Cesium -137 (Figure 67) was similar in pattern to Ce-144 but the exponential rates of decline were faster so less remained in the water by the end of the experiment (more than 5\%).

None of the radionuclides reached equilibrium by day 14 , except possibly Mn-54.

The ratios of radionuclides in the sand and animals to those in the water on day 14 are presented in Figures 68-70. The ratios could not be calculated for $\mathrm{Zn}-65$ or $\mathrm{Mn}-54$, since measurable amounts were not present in the water on day 14.

Figure 63. Manganese-54 in the water during the experiment. Dots $=$ jar B; triangles $=j a r C ; s q u a r e s=j a r A$.

Figure 64. Zinc-65 in the water during the experiment. Dots $=j a r \mathrm{~B}$; triangles $=\mathrm{jar} C$; squares $=$ jar A.

Figure 65. Cerium-144 in the water during the experiment. Dots $=j a r B ;$ triangles $=j$ ar C; squares $=j a r A$.

Figure 66. Barium-133 in the water during the experiment.

Figure 67. Cesium-137 in the water during the experiment.

Sphaerium striatinum, (fingernail clam), HeZobdeZZa (leech), and Chironomus and Prociladius (dipteran larvae) were poor concentrators of Ba-133 (Figure 68). Sand, Lymnaea, Valvata (snails), Sphaerium nitidum (fingernail clam), Oligochaeta, and Tanytarsini (dipteran larvae) were better, with ratios between 20 and 80 to 1. Best were Pisidium (tiny fingernail clams), empty shells (including those of Pisidium, S. nitidum, Valvata and Lymnaea), and Pontoporeia affinis (freshwater shrimp). Variability among replicates was large for these three categories, especially for empty shells and Pontoporeia, but there was little variation in ratios from different jars among other taxa. The concentration ratios for Ba-133 were low in general compared to those for other isotopes.

Cs-137 (Figure 69) was barely accumulated by HeZobdella and ProcZadius, and moderately concentrated by other taxa and sand (ratios mostly between 50 and 250 to 1.) Pontoporeia developed a ratio over $350: 1$ in jar C. The best concentrator overall was the Tanytarsini larva, with a ratio of around 700 . These ratios were higher than those for Ba-133, but still rather low.

Ce-144 (Figure 70) was concentrated less well by the Sphaeriums, HeZobdeZZa, and Procladius (ratios less than 400:1), and best, again, by Pontoporeia in jar C and Tanytarsini. Extremely high concentration ratios were developed by Tanytarsini in jars B and C, in excess of 14,500:1. Other taxa and sand exhibited ratios between 500 and 2,000 .

Ratios of the radioactivity per gram of animal to the amount per milliliter of sand are also illustrated in Figures 68-70, and in Figure 71 for $\mathrm{Mn}-54$ and Zn-65. Only those taxa which were the best concentrators in comparison to the final concentration in the water developed ratios above 5:1 in relation to sand (see Table 61). For Ba-133 (Figure 68), these were Pisidium, empty shells, and Pontoporeia, in that order. Tanytarsini and some sets of Pontoporeia, Valvata, and Oligochaeta concentrated Cs-137 above the amount in the sand (Figure 69).

Table 61. Animals which concentrated each radionuclide in relation to sand by 5:1 or more. The third column is the number of replicates in which this criterion was met. The concentration ratios are listed in the fourth column.

Radionuclide	Animal	No. Repl.	Conc. Ratios
Ce-144	Tanytarsini sp.	3	22.5, 9.1, 29.3
	Pontoporeia affinis	1	5.9
Ba-133	Pisidium spp.	3	$6.9,6.5,9.2$
	Empty shells*	2	6.4, 7.3
	Pontoporeia affinis	1	5.1
Cs-137	none (2 replicates ratios over 4)	Tanytarsini developed	
Mn-54	Valvata spp.	2	7.2, 6.5
	Empty shells*	2	$6.1,6.7$
	Tanytarsini sp.	3	18.3, 7.0, 20.0
	Pontoporeia affinis	1	7.9
2n-65		3	21.3, 11.4, 24.0
	Pisidium spp.	3	9.0, 5.3, 11.1
	Empty shells*	2	$11.2,9.0$
	Tanytarsini sp.	2	8.9, 9.7

More taxa were able to concentrate Ce-144 (Figure 70) above levels found in the sand, and Tanytarsini and Pontoporeia in jar C developed larger ratjos than for Ba-133 or Cs-137. Lymnaea, Valvata, Pisidium, enpty ahells, Tanytarsini, and Pontoporeia all concentrated Mn-54 (Figuxe 71a) above levels found in the sand, but Tanytarsini clearly concentrated it mosi. Ali kinds of animals except ProcZadius developed higher $2 n-65$ radioactivity (Figure 71b) than the sand, but HeZobdeZZa and Chironomus fust barely did so. Fisidium, empty shells and Tanytarsini concentrated moderate amouncs, and produced ratios of 2 - 11 to 1 over sand. Valvata was the most effective concentracor however. with a ratio of $24: 1$ in one replicate. Only the concentration of ce- 144 by Tanytarsini exceeded this ratio.

Discussion

The sizes and kinds of aninals subjscted to radionuclide solutions rere less than ideal in some respects. Kidd (1970) provides data whin indicate a highly significant difference between uptake by snall and large Fontoporeia affinis for $\mathrm{Sr}-85, \mathrm{Mn}-54$, and $\mathrm{Zn}-65$. Insufficient material was avallable in the present experiment to test both small ar large individuals of Fontoporeia separately. The experimental sets of animals did include a few large animals along with the small ones, however. The presence of several more large animals in jar C than in the other jars could account for the elevated uptake in that jar. The lone Sphaerium striatinum in jar A cannot have provided adequate information about the uptake of this species.

The deaths of large proportions of both Pontoporeia and Sphaerium nitidum indicate that uptake conditions may not have been ideal for these species. The route from dissolved ions through phytoplankton to filter-feeding benthos was not present in this system, but it could be a very important one. Susperded
particulate organic sources of radionuclides would probably have increased the uptake by all the sphaeriids (fingernail clams), Chironomus, Tanytarsini, and Pontoporeia. Kidd (1970) found that radionuclides in the form of dead algal cells were much more readily taken up by Pontoporeia than those in the dissolved state. Nevertheless, considerable uptake occurred in several species, and some kinds of animals appeared to thrive in the jars.

The complete removal of flesh from dead mollusks, and rapid disappearance of the dead Mysis indicated that very active predators or scavengers occurred among the animals in the jars. Only Procladius and HeZobdella are definite predators, however, and their accumulation of radionuclides was much less than other kinds of animals. Perhaps the snails or Tanytarsini fed on decaying flesh.

The patterns of disappearance of radionuclides from the water suggest that several processes occurred during the experiment. Ce-144 had the most complex pattern. This element is not very soluble in water, especially at pH 's near neutrality. Its low ionic concentration could have led to the formation of particles with a wide range of sizes. Immediate precipitation of larger particles would then have removed much of the radioactivity due to this isotope, and persistence of colloidal particles in uneven suspension could have produced some of the irregularities in its rate of decline and differences in rank order of the three jars. The final, slow rate of exponential decline could be due to uptake by adsorption on the glass and sand and incorporation into animals and microbes growing at the water-solids interfaces. Some form of co-precipitation with Cerium or other particles which formed as a result of changes in pH and salinity could explain the initially rapid decreases in all of the elements. The later slower rates of decline are attributable to processes similar to those which were described for Cerium, as well as to the normal move-
ment toward chemical equilibrium with other isotopes of the elements in the system. The complete and rapid disappearance of $M n-54$ over five days suggests that some active accumulatory process for this element existed in the jars. Manganese (and iron) typically form encrustations on sand grains and some sphaerild shells which, in some parts of Lake Michigan, develop into manganese nodules. These encrustations have a high affinity for other ions, so this process may account for much of the removal of radionuclides from solution, and for the high concentrations in sand and clams. Whether it is a purely geochemical process, or involves bacteria or fungi has not been established.

Zinc was concentrated to higher levels by more kinds of animals than other isotopes. Its concentration by marine organisms is well known, and Kidd (1970) previously observed that Fontoporeia concentrates it.

In general, the tendency of a radionulide to remain dissolved or suspended in the water was negatively correlated with che tendency of benthos to accumulate it to higher levels than occurred in the sand. Even though large amounts of barium and cesium were present in the sand, few animals concentrated these elements further.

Those kinds of animals which accumulated the most radionuclides are believed to feed upon settled, fine detritus and microbes growing on solid surfaces. The snails grazed the glass walls of the jar. They probably took up more radionuclides in the jars than they would in the lake, because of the special surface provided by the glass for adsorption of radionuclides. Pontoporeia is believed to feed on detritus filtered from the water or stirred up from the superficial sediments. Tanytarsini build tubes which lie on the surface of the sand, and pump water through them constantly. They probably eat fine particles which become entrapped in the mucus with which they line their tubes, or they may scrape surface growths from the sand grains. The Sphaerium
nitidum may have fed less than normally, because of elevated temperatures, 80 in the lake they might take up more radionuclides. The 01igochaeta feed below the surface of the sediments, away from the highest levels of radioactivity. Their uptake may have been suppressed in the experiments because of the intentionally coarse grain size of the sediments -- ordinarily they prefer silt and clay-sized material. The weak uptake by predators indicates they were not feeding during the experiment.

A considered recommendation of the relative usefulness of these kinds of animals as biological monitors of radionuclides must incorporate the availability of the animal in the environment, i. e., the constancy of its populations and its abundance in the vicinity of the outfall.

No animal is very abundant near the outfall. A mixture of Chironomidae and low numbers of Pontoporeia, Oligochaeta, Pisidium, and Sphaerium striatinum characterize the benthos at depths from 6-10 meters. The Chironomidae have the disadvantage of being difficult to collect in large numbers because of their small size and buxrowng habitss and they are so small for much of the year that efficient collection is practically impossible. Sphaeriidae, Gastropoda, and Pontoporeia are easier to collect, for they can be stirred out of the sediments and washed clean of sand in a relatively simple epibenthic sled bearing a coarsely meshed net. Large amounts of material can be collected, even at the depth of the outfall, with such a sled. Therefore, even though one chironomid (and not a very abundant species, at that) accumulated many radionuclides very efficiently, Pontoporeia is much better as a radionuclide monitor. This amphipod was frequently among the better accumulators in this experiment. Some variability in its concentration ability is to be expected in seasons when its population size distributions are large (as in spring) or small (as in summer). Other kinds of animals should not be ignored completely,
however. Chironomidae may still be used for accumulation studies, at certain times of the year, such as late summer and autumn when Pontoporeia is small. Pisidium accumulated barium better than most animals.

The affinities of different animals for different radionuclides in this experiment strongly indicates that at least three or four kinds of animals be monitored. These should include Pisidium, Gastropoda, Tanytarsini (or other small Chironomidae) and especially Pontoporeia.

This experiment also iliustrates the teadency of sand to accumulate radionuclides. The sediments thenselves may be the best overall monttors of radtonuclide cocurrence in the environment, and they should certainly be collected for measurements.

Finally, this experiment leares some important gisestions inanswered. E radionuclides are released intermitcently, and exposure of antuäs is at ugh levels foc brief perioco, some of the radionuclides nay dissipate back into the water from benthos and sediments after the "slug" of vaficactire water passes. The stability of accumulated radionuclide concentrations in the animals should be determined. Some elements which are abundant as radioisotopes in nurleas fower plant wastes, ond whith may be concentreted by plante ard antrals, are Cobalt, Chromium, and Iodine. These shou'd also be studied.

For a more detailed discussion of the aptake of $2 n, 5 \pi$, and Mn Dy Pontom poweia, refer to Kidd (1970).

References

Kidd, C. C. 1970. Benton Harbor power plant limnological studies. Part IV. Fontoporeia affinis (Crustacea, Amphipoda) as a monitor of radionuclides released to Lake Michigan. Spec. Rep. No. 44, Great Lakes Res. Div., U. Michigan. 71 p.

[^0]: 1. Sanford, G. R., A. Sands, and C. R. Goldman. 1969. A settle-freeze method for concentrating phytoplankton in quantitative studies. Limn. and Oceanog., $14(5): 790-794$.
[^1]: ** $=$ Dry weight x 0.7728 from Nalewajko (1966), to give average ash-free dry weight (organic tissue) from total dry weight.
 *** = May average percent of particulate
 matter representing live phytoplankton (see text).

[^2]: *I $=$ Inshore stations; $\quad 0=$ Offshore stations.

[^3]: dates in 1972. Error bars show \pm one standard deviation tions included on each date is shown in parentheses.

[^4]: $1_{\text {Shannon, }}$ C. E. and W. Weaver. 1963. The mathematical theory of communication. University of Illinois Press, Urbana. 117 p.

[^5]: 1 Hamilton, A. L., D. A. Saether, and D. R. Oliver. 1970. Tech. Report Fish. Res. Bd. Canada 124.

[^6]: int for interfence by other isotopes in the peak region were made with the method of simultaneous equations.
 Sand volume was measured from wet, settled sand. Counts are sum of 5 channels around one peak for each isotope.
 the experiment.

